中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China

文献类型:期刊论文

作者Tao, Jun3; Zhang, Zhisheng3; Wu, Yunfei2; Zhang, Leiming1; Wu, Zhijun4; Cheng, Peng5; Li, Mei5; Chen, Laiguo3; Zhang, Renjian2; Cao, Junji6
刊名ATMOSPHERIC CHEMISTRY AND PHYSICS
出版日期2019-07-04
卷号19期号:13页码:8471-8490
ISSN号1680-7316
DOI10.5194/acp-19-8471-2019
通讯作者Tao, Jun(taojun@scies.org) ; Zhang, Leiming(leiming.zhang@canada.ca)
英文摘要To grasp the key factors affecting particle mass scattering efficiency (MSE), particle mass and number size distribution, PM2.5 and PM10 and their major chemical compositions, and the particle scattering coefficient (b(sp)) under dry conditions were measured at an urban site in Guangzhou, southern China, during 2015-2016. On an annual average, 10 +/- 2 %, 48 +/- 7 % and 42 +/- 8 % of PM10 mass were in the condensation, droplet and coarse modes, respectively, with mass mean aerodynamic diameters (MMADs) of 0.78 +/- 0.07 in the droplet mode and 4.57 +/- 0.42 pm in the coarse mode. The identified chemical species mass concentrations can explain 79 +/- 3 %, 82 +/- 6 % and 57 +/- 6 % of the total particle mass in the condensation, droplet and coarse mode, respectively. Organic matter (OM) and elemental carbon (EC) in the condensation mode, OM, (NH4)(2)SO4, NH4NO3, and crustal element oxides in the droplet mode, and crustal element oxides, OM, and CaSO4 in the coarse mode, were the dominant chemical species in their respective modes. The measured b(sp) can be reconstructed to the level of 91 +/- 10 % using Mie theory with input of the estimated chemically resolved number concentrations of NaCl, NaNO3, Na2SO4, NH4NO3, (NH4)(2)SO4, K2SO4, CaSO4, Ca(NO3)(2), OM, EC, crustal element oxides and unidentified fraction. MSEs of particle and individual chemical species were underestimated by less than 13 % in any season based on the estimated b(sp) and chemical species mass concentrations. Seasonal average MSEs varied in the range of 3.5 +/- 0.1 to 3.9 +/- 0.2 m(2) g(-1) for fine particles (aerodynamic diameter smaller than 2.1 mu m), which was mainly caused by seasonal variations in the mass fractions and MSEs of the dominant chemical species (OM, NH4NO3, (NH4)(2)SO4) in the droplet mode. MSEs of the dominant chemical species were determined by their lognormal size-distribution parameters, including MMADs and standard deviation (sigma) in the droplet mode.
WOS关键词PEARL RIVER-DELTA ; SECONDARY ORGANIC AEROSOL ; LIGHT EXTINCTION COEFFICIENTS ; PM2.5 SOURCE PROFILES ; SOURCE APPORTIONMENT ; OPTICAL-PROPERTIES ; ELEMENTAL CARBON ; PARTICULATE MATTER ; FINE PARTICLES ; INORGANIC-IONS
资助项目National Natural Science Foundation of China[41475119] ; National Natural Science Foundation of China[41875160] ; National Natural Science Foundation of China[41603119]
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
语种英语
WOS记录号WOS:000473813000001
出版者COPERNICUS GESELLSCHAFT MBH
资助机构National Natural Science Foundation of China
源URL[http://ir.ieecas.cn/handle/361006/13736]  
专题地球环境研究所_粉尘与环境研究室
通讯作者Tao, Jun; Zhang, Leiming
作者单位1.Environm & Climate Change Canada, Sci & Technol Branch, Air Qual Res Div, Toronto, ON, Canada
2.Chinese Acad Sci, Inst Atmospher Phys, RCE TEA, Beijing, Peoples R China
3.Minist Environm Protect, South China Inst Environm Sci, Guangzhou, Guangdong, Peoples R China
4.Peking Univ, Coll Environm Sci & Engn, State Key Joint Lab Environm Simulat & Pollut Con, Beijing, Peoples R China
5.Jinan Univ, Inst Mass Spectrometer & Atmos Environ, Guangzhou, Guangdong, Peoples R China
6.Chinese Acad Sci, Inst Earth Environm, Key Lab Aerosol Chem & Phys, Xian, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Tao, Jun,Zhang, Zhisheng,Wu, Yunfei,et al. Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2019,19(13):8471-8490.
APA Tao, Jun.,Zhang, Zhisheng.,Wu, Yunfei.,Zhang, Leiming.,Wu, Zhijun.,...&Cao, Junji.(2019).Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China.ATMOSPHERIC CHEMISTRY AND PHYSICS,19(13),8471-8490.
MLA Tao, Jun,et al."Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China".ATMOSPHERIC CHEMISTRY AND PHYSICS 19.13(2019):8471-8490.

入库方式: OAI收割

来源:地球环境研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。