中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Quantum tomography by regularized linear regressions

文献类型:期刊论文

作者Mu, Biqiang3; Qi, Hongsheng1,3; Petersen, Ian R.2; Shi, Guodong4
刊名AUTOMATICA
出版日期2020-04-01
卷号114页码:15
关键词Quantum state tomography Linear regression Regularization
ISSN号0005-1098
DOI10.1016/j.automatica.2020.108837
英文摘要In this paper, we study extended linear regression approaches for quantum state tomography based on regularization techniques. For unknown quantum states represented by density matrices, performing measurements under certain basis yields random outcomes, from which a classical linear regression model can be established. First of all, for complete or over-complete measurement bases, we show that the empirical data can be utilized for the construction of a weighted least squares estimate (LSE) for quantum tomography. Taking into consideration the trace-one condition, a constrained weighted LSE can be explicitly computed, being the optimal unbiased estimation among all linear estimators. Next, for general measurement bases, we show that l(2)-regularization with proper regularization gain provides even a lower mean-square error under a cost in bias. The optimal regularization parameter is defined in terms of a risk characterization for any finite sample size and a resulting implementable estimator is proposed. Finally, a concise and unified formula is established for the regularization parameter with complete measurement basis under an equivalent regression model, which proves that the proposed implementable tuning estimator is asymptotically optimal as the number of copies grows to infinity. Additionally, several numerical examples are provided to validate the established results. (C) 2020 Elsevier Ltd. All rights reserved.
资助项目National Key R&D Program of China[2018YFA0703800] ; National Natural Science Foundation of China[61873262] ; Australian Research Council[DP180101805] ; Australian Research Council[DP190103615]
WOS研究方向Automation & Control Systems ; Engineering
语种英语
WOS记录号WOS:000519656500014
出版者PERGAMON-ELSEVIER SCIENCE LTD
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/50961]  
专题中国科学院数学与系统科学研究院
通讯作者Qi, Hongsheng
作者单位1.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
2.Australian Natl Univ, Res Sch Elect Energy & Mat Engn, Canberra, ACT 0200, Australia
3.Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
4.Univ Sydney, Australian Ctr Field Robot, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
推荐引用方式
GB/T 7714
Mu, Biqiang,Qi, Hongsheng,Petersen, Ian R.,et al. Quantum tomography by regularized linear regressions[J]. AUTOMATICA,2020,114:15.
APA Mu, Biqiang,Qi, Hongsheng,Petersen, Ian R.,&Shi, Guodong.(2020).Quantum tomography by regularized linear regressions.AUTOMATICA,114,15.
MLA Mu, Biqiang,et al."Quantum tomography by regularized linear regressions".AUTOMATICA 114(2020):15.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。