中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deep prototypical networks based domain adaptation for fault diagnosis

文献类型:期刊论文

作者Wang, Huanjie1,2; Bai, Xiwei1,2; Tan, Jie2; Yang, Jiechao1,2
刊名JOURNAL OF INTELLIGENT MANUFACTURING
出版日期2020-11-11
页码11
关键词Bearing Fault diagnosis Domain adaptation Prototype learning
ISSN号0956-5515
DOI10.1007/s10845-020-01709-4
通讯作者Tan, Jie(jie.tan@ia.ac.cn)
英文摘要Due to the existence of domain shifts, the distributions of data acquired from different machines show significant discrepancies in industrial applications, which leads to performance degradation of traditional machine learning methods. In this paper, we propose a novel method that combines supervised domain adaptation with prototype learning for fault diagnosis. The proposed method consists of two modules, i.e., feature learning and condition recognition. The module of feature learning applies the Siamese architecture based on one-dimensional convolutional neural networks to learn a domain invariant subspace, which reduces the inter-domain discrepancy of distributions. The module of condition recognition applies a prototypical layer to learn the prototypes of each class. Then the classification task is simplified to find the nearest class prototype. Compared with existing intelligent fault diagnosis methods, this proposed method can be extended to address the problem when the classes from the source and target domains are partially overlapped. The model must generalize to unknown classes in the source domain, given only a few samples of each new target class. The effectiveness of the proposed method is verified using two bearing datasets. The model quickly converges with high classification accuracy using a few labeled target samples in training, even one per class can be effective.
WOS关键词CLASSIFIER
资助项目National Key Research and Development Program (CN)[2018YFB1703400] ; National Natural Science Foundation of China[U1801263] ; National Natural Science Foundation of China[U1701262]
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000588582400001
出版者SPRINGER
资助机构National Key Research and Development Program (CN) ; National Natural Science Foundation of China
源URL[http://ir.ia.ac.cn/handle/173211/41764]  
专题综合信息系统研究中心_工业智能技术与系统
通讯作者Tan, Jie
作者单位1.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wang, Huanjie,Bai, Xiwei,Tan, Jie,et al. Deep prototypical networks based domain adaptation for fault diagnosis[J]. JOURNAL OF INTELLIGENT MANUFACTURING,2020:11.
APA Wang, Huanjie,Bai, Xiwei,Tan, Jie,&Yang, Jiechao.(2020).Deep prototypical networks based domain adaptation for fault diagnosis.JOURNAL OF INTELLIGENT MANUFACTURING,11.
MLA Wang, Huanjie,et al."Deep prototypical networks based domain adaptation for fault diagnosis".JOURNAL OF INTELLIGENT MANUFACTURING (2020):11.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。