中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Generalized Visual-Tactile Transformer Network for Slip Detection

文献类型:会议论文

;
作者Cui, Shaowei1,2; Wei, Junhang1,2; Li, Xiaocan1; Wang, Rui1; Wang, Yu1; Wang, Shuo1,3
出版日期2020-02 ; 2020-02
会议日期2020-6 ; 2020-6
会议地点在线会议 ; 在线会议
关键词Information and sensor fusion Information and sensor fusion Perception and sensing Intelligent robotics Deep neural networks Visual-tactile fusion perception Perception and sensing Intelligent robotics Deep neural networks Visual-tactile fusion perception
英文摘要

    Slip detection plays a vital role in robotic dexterous grasping and manipulation, and it has long been a challenging problem in the robotic community. Different from traditional tactile perception-based methods, we propose a Generalized Visual-Tactile Transformer (GVT-Transformer) network to detect slip based on visual and tactile spatiotemporal sequences. The main novelty of GVT-Transformer is its ability to address unaligned vision and tactile data in various formats captured by various tactile sensors. Furthermore, we train and test our proposed network on a public and our visual-tactile grasping datasets. The experimental results show that our method is more suitable for sliding detection tasks than previous visual-tactile learning methods and more versatile.

;

    Slip detection plays a vital role in robotic dexterous grasping and manipulation, and it has long been a challenging problem in the robotic community. Different from traditional tactile perception-based methods, we propose a Generalized Visual-Tactile Transformer (GVT-Transformer) network to detect slip based on visual and tactile spatiotemporal sequences. The main novelty of GVT-Transformer is its ability to address unaligned vision and tactile data in various formats captured by various tactile sensors. Furthermore, we train and test our proposed network on a public and our visual-tactile grasping datasets. The experimental results show that our method is more suitable for sliding detection tasks than previous visual-tactile learning methods and more versatile.

语种英语 ; 英语
源URL[http://ir.ia.ac.cn/handle/173211/40233]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队
通讯作者Wang, Shuo
作者单位1.中国科学院自动化研究所复杂系统管理与控制国家重点实验室
2.中国科学院大学未来技术学院
3.中国科学院类脑智能研究中心
推荐引用方式
GB/T 7714
Cui, Shaowei,Wei, Junhang,Li, Xiaocan,et al. Generalized Visual-Tactile Transformer Network for Slip Detection, Generalized Visual-Tactile Transformer Network for Slip Detection[C]. 见:. 在线会议, 在线会议. 2020-6, 2020-6.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。