Generalized Visual-Tactile Transformer Network for Slip Detection
文献类型:会议论文
| ; | |
| 作者 | Cui, Shaowei1,2 ; Wei, Junhang1,2 ; Li, Xiaocan1 ; Wang, Rui1 ; Wang, Yu1 ; Wang, Shuo1,3
|
| 出版日期 | 2020-02 ; 2020-02 |
| 会议日期 | 2020-6 ; 2020-6 |
| 会议地点 | 在线会议 ; 在线会议 |
| 关键词 | Information and sensor fusion Information and sensor fusion Perception and sensing Intelligent robotics Deep neural networks Visual-tactile fusion perception Perception and sensing Intelligent robotics Deep neural networks Visual-tactile fusion perception |
| 英文摘要 | Slip detection plays a vital role in robotic dexterous grasping and manipulation, and it has long been a challenging problem in the robotic community. Different from traditional tactile perception-based methods, we propose a Generalized Visual-Tactile Transformer (GVT-Transformer) network to detect slip based on visual and tactile spatiotemporal sequences. The main novelty of GVT-Transformer is its ability to address unaligned vision and tactile data in various formats captured by various tactile sensors. Furthermore, we train and test our proposed network on a public and our visual-tactile grasping datasets. The experimental results show that our method is more suitable for sliding detection tasks than previous visual-tactile learning methods and more versatile. ;Slip detection plays a vital role in robotic dexterous grasping and manipulation, and it has long been a challenging problem in the robotic community. Different from traditional tactile perception-based methods, we propose a Generalized Visual-Tactile Transformer (GVT-Transformer) network to detect slip based on visual and tactile spatiotemporal sequences. The main novelty of GVT-Transformer is its ability to address unaligned vision and tactile data in various formats captured by various tactile sensors. Furthermore, we train and test our proposed network on a public and our visual-tactile grasping datasets. The experimental results show that our method is more suitable for sliding detection tasks than previous visual-tactile learning methods and more versatile. |
| 语种 | 英语 ; 英语 |
| 源URL | [http://ir.ia.ac.cn/handle/173211/40233] ![]() |
| 专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队 |
| 通讯作者 | Wang, Shuo |
| 作者单位 | 1.中国科学院自动化研究所复杂系统管理与控制国家重点实验室 2.中国科学院大学未来技术学院 3.中国科学院类脑智能研究中心 |
| 推荐引用方式 GB/T 7714 | Cui, Shaowei,Wei, Junhang,Li, Xiaocan,et al. Generalized Visual-Tactile Transformer Network for Slip Detection, Generalized Visual-Tactile Transformer Network for Slip Detection[C]. 见:. 在线会议, 在线会议. 2020-6, 2020-6. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

