Optimal Policies for Quantum Markov Decision Processes
文献类型:期刊论文
作者 | Ming-Sheng Ying1,2,3; Yuan Feng3![]() |
刊名 | International Journal of Automation and Computing
![]() |
出版日期 | 2021 |
卷号 | 18期号:3页码:410-421 |
关键词 | Quantum Markov decision processes quantum machine learning reinforcement learning dynamic programming decision making |
ISSN号 | 1476-8186 |
DOI | 10.1007/s11633-021-1278-z |
英文摘要 | Markov decision process (MDP) offers a general framework for modelling sequential decision making where outcomes are random. In particular, it serves as a mathematical framework for reinforcement learning. This paper introduces an extension of MDP, namely quantum MDP (qMDP), that can serve as a mathematical model of decision making about quantum systems. We develop dynamic programming algorithms for policy evaluation and finding optimal policies for qMDPs in the case of finite-horizon. The results obtained in this paper provide some useful mathematical tools for reinforcement learning techniques applied to the quantum world. |
源URL | [http://ir.ia.ac.cn/handle/173211/44290] ![]() |
专题 | 自动化研究所_学术期刊_International Journal of Automation and Computing |
作者单位 | 1.Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China 2.State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China 3.Centre for Quantum Software and Information, University of Technology Sydney, NSW 2007, Australia |
推荐引用方式 GB/T 7714 | Ming-Sheng Ying,Yuan Feng,Sheng-Gang Ying. Optimal Policies for Quantum Markov Decision Processes[J]. International Journal of Automation and Computing,2021,18(3):410-421. |
APA | Ming-Sheng Ying,Yuan Feng,&Sheng-Gang Ying.(2021).Optimal Policies for Quantum Markov Decision Processes.International Journal of Automation and Computing,18(3),410-421. |
MLA | Ming-Sheng Ying,et al."Optimal Policies for Quantum Markov Decision Processes".International Journal of Automation and Computing 18.3(2021):410-421. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。