中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Optimal Policies for Quantum Markov Decision Processes

文献类型:期刊论文

作者Ming-Sheng Ying1,2,3; Yuan Feng3; Sheng-Gang Ying2
刊名International Journal of Automation and Computing
出版日期2021
卷号18期号:3页码:410-421
关键词Quantum Markov decision processes quantum machine learning reinforcement learning dynamic programming decision making
ISSN号1476-8186
DOI10.1007/s11633-021-1278-z
英文摘要Markov decision process (MDP) offers a general framework for modelling sequential decision making where outcomes are random. In particular, it serves as a mathematical framework for reinforcement learning. This paper introduces an extension of MDP, namely quantum MDP (qMDP), that can serve as a mathematical model of decision making about quantum systems. We develop dynamic programming algorithms for policy evaluation and finding optimal policies for qMDPs in the case of finite-horizon. The results obtained in this paper provide some useful mathematical tools for reinforcement learning techniques applied to the quantum world.
源URL[http://ir.ia.ac.cn/handle/173211/44290]  
专题自动化研究所_学术期刊_International Journal of Automation and Computing
作者单位1.Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
2.State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
3.Centre for Quantum Software and Information, University of Technology Sydney, NSW 2007, Australia
推荐引用方式
GB/T 7714
Ming-Sheng Ying,Yuan Feng,Sheng-Gang Ying. Optimal Policies for Quantum Markov Decision Processes[J]. International Journal of Automation and Computing,2021,18(3):410-421.
APA Ming-Sheng Ying,Yuan Feng,&Sheng-Gang Ying.(2021).Optimal Policies for Quantum Markov Decision Processes.International Journal of Automation and Computing,18(3),410-421.
MLA Ming-Sheng Ying,et al."Optimal Policies for Quantum Markov Decision Processes".International Journal of Automation and Computing 18.3(2021):410-421.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。