中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Novel Sparse Geometric 3-D LiDAR Odometry Approach

文献类型:期刊论文

作者Liang, Shuang2,3; Cao, Zhiqiang2,3; Guan, Peiyu2,3; Wang, Chengpeng2,3; Yu, Junzhi1,3; Wang, Shuo2,3
刊名IEEE SYSTEMS JOURNAL
出版日期2021-03-01
卷号15期号:1页码:1390-1400
关键词Laser radar Feature extraction Simultaneous localization and mapping Three-dimensional displays Computational complexity Distance measurement Lighting Line and plane features line-to-line and plane-to-plane associations sparse geometric map 3-D light detection and ranging (LiDAR) odometry
ISSN号1932-8184
DOI10.1109/JSYST.2020.2995727
通讯作者Cao, Zhiqiang(zhiqiang.cao@ia.ac.cn)
英文摘要Localization is a fundamental prerequisite, no matter whether a single robot or multirobot system, where light detection and ranging (LiDAR) odometry has attracted great interest with accurate depth information and robustness to illumination variations. In this article, a novel 3-D LiDAR odometry approach based on sparse geometric information is proposed. Different from geometric map-based 3-D LiDAR odometry methods with point features, we concern significant line and plane features based on eigenvalues of neighboring points. Furthermore, line-to-line and plane-to-plane associations instead of point-to-line and point-to-plane associations are adopted, and the problem of high computation complexity for scan-to-map matching module caused by point feature is solved. The proposed approach can not only guarantee the accuracy of pose estimation but also reduce computation complexity. Experiments on the public KITTI dataset and an outdoor scenario demonstrate the effectiveness of our approach in terms of accuracy and efficiency.
资助项目National Natural Science Foundation of China[61633017] ; National Natural Science Foundation of China[61633020] ; National Natural Science Foundation of China[61836015] ; Beijing Advanced Innovation Center for Intelligent Robots and Systems[2018IRS21] ; Key Research and Development Program of Shandong Province[2017CXGC0925]
WOS研究方向Computer Science ; Engineering ; Operations Research & Management Science ; Telecommunications
语种英语
WOS记录号WOS:000628985900137
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China ; Beijing Advanced Innovation Center for Intelligent Robots and Systems ; Key Research and Development Program of Shandong Province
源URL[http://ir.ia.ac.cn/handle/173211/44167]  
专题智能机器人系统研究
自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队
通讯作者Cao, Zhiqiang
作者单位1.Peking Univ, Beijing Innovat Ctr Engn Sci & Adv Technol, Dept Mech & Engn Sci, Coll Engn,State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Liang, Shuang,Cao, Zhiqiang,Guan, Peiyu,et al. A Novel Sparse Geometric 3-D LiDAR Odometry Approach[J]. IEEE SYSTEMS JOURNAL,2021,15(1):1390-1400.
APA Liang, Shuang,Cao, Zhiqiang,Guan, Peiyu,Wang, Chengpeng,Yu, Junzhi,&Wang, Shuo.(2021).A Novel Sparse Geometric 3-D LiDAR Odometry Approach.IEEE SYSTEMS JOURNAL,15(1),1390-1400.
MLA Liang, Shuang,et al."A Novel Sparse Geometric 3-D LiDAR Odometry Approach".IEEE SYSTEMS JOURNAL 15.1(2021):1390-1400.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。