中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Real-Time Vehicle Detection Algorithm Based on Sparse Point Clouds and Dempster-Shafer Fusion Theory

文献类型:会议论文

作者Xu FY(徐凤煜)1,2; Liang HW(梁华为)2,5; Wang ZL(王智灵)2,5; Lin LL(林玲龙)2,4; Chu ZW(储志伟)3
出版日期2019-08-26
会议日期2018-8-11
关键词vehicle detection sparse point clouds virtual laser line D-S fusion
英文摘要
In order to improve real-time performance and
reduce the dependence on computing resources, we present a
novel vehicle detection algorithm based on sparse point clouds
in this paper. In point clouds segmentation, virtual laser line is
proposed and our fast two-step segmentation method has proved
to be time-effificient. Since accuracy and real-time capabilities are
all crucial for autonomous vehicles, we utilize multiple features
analysis and dempster-shafer(D-S) fusion theory to improve
detection accuracy. Validation tests and experimental results
show our method has a high performance in real urban traffific
situations.
会议录2018 IEEE International Conference on Information and Automation (ICIA)
语种英语
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/125914]  
专题合肥物质科学研究院_中科院合肥智能机械研究所
作者单位1.中国科学技术大学
2.中科学院合肥物质科学研究院
3.东北大学
4.中国科学院机器人与智能制造创新研究院
5.安徽省智能驾驶技术及应用工程实验室
推荐引用方式
GB/T 7714
Xu FY,Liang HW,Wang ZL,et al. A Real-Time Vehicle Detection Algorithm Based on Sparse Point Clouds and Dempster-Shafer Fusion Theory[C]. 见:. 2018-8-11.

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。