中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Robust Sliding Mode-Based Learning Control for Lane-Keeping Systems in Autonomous Vehicles

文献类型:会议论文

作者Ge ZK(葛志康)1,2,4; Wang Z(王卓)1,3,4; Bai XP(白晓平)1,3,4; Wang XX(王枭雄)1,2,4
出版日期2021
会议日期August 1-4, 2021
会议地点Chengdu, China
关键词sliding mode-based learning control (SMLC) Lipschitz-like condition strong robustness
页码1856-1861
英文摘要In this paper, a robust sliding mode-based learning control (SMLC) scheme for lane-keeping systems (LKS) of road vehicles is proposed. It is assumed that all of signals in system satisfy Lipschitz-like condition, a robust sliding mode-based learning controller is designed to achieve the zero-error convergence of lateral position error dynamics. A new finding is that yaw angle error dynamics is able to converge to zero asymptotically on the sliding surface. Unlike many existing sliding mode control schemes, the proposed SMLC scheme does not require the bound information of unknown system parameters. More significantly, the LKS equipped with the SMLC algorithm exhibits a strong robustness against varying road conditions and external disturbances. Simulation results demonstrate that the designed SMLC scheme could exert excellent tracking performance and robustness.
产权排序1
会议录Proceedings of the 16th IEEE Conference on Industrial Electronics and Applications, ICIEA 2021
会议录出版者IEEE
会议录出版地New York
语种英语
ISBN号978-1-6654-2248-2
WOS记录号WOS:000709847700330
源URL[http://ir.sia.cn/handle/173321/29676]  
专题沈阳自动化研究所_数字工厂研究室
中国科学院沈阳自动化研究所
通讯作者Ge ZK(葛志康)
作者单位1.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Key Laboratory of Agricultural Equipment Intelligent Technology, Liaoning Province, Shenyang 110169, China
4.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
推荐引用方式
GB/T 7714
Ge ZK,Wang Z,Bai XP,et al. Robust Sliding Mode-Based Learning Control for Lane-Keeping Systems in Autonomous Vehicles[C]. 见:. Chengdu, China. August 1-4, 2021.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。