中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Novel power-exponent-type modified RNN for RMP scheme of redundant manipulators with noise and physical constraints

文献类型:期刊论文

作者Tong YC(佟玉闯)1,2,3; Liu JG(刘金国)1,2
刊名Neurocomputing
出版日期2022
卷号467页码:266-281
关键词Redundant manipulator Repetitive motion planning Recurrent neural network Noise Physical constraint
ISSN号0925-2312
产权排序1
英文摘要

Noise and physical constraints of redundant manipulators are the two major challenges in the repetitive motion planning (RMP) problems. Therefore, this paper proposed a power-exponent-type modified recurrent neural network (PET-MRNN) to simultaneously address both noise and physical constraints. Moreover, PET-MRNN model is activated by a new Sbp-sinh type nonlinear activation function proposed in this paper. The Sbp-sinh type activation function is first applied to such time varying quadratic program (TVQP) solving and possesses excellent convergence performance. Theoretical analysis proves that the PET-MRNN model can completely eliminate noise disturbance through learning and compensation during the convergence process, and then converge the residual error to zero and obtain the theoretical solution. Finally, simulation and experiments further proved the superiority of the PET-MRNN and the Sbp-sinh type activation function.

语种英语
WOS记录号WOS:000709984900009
资助机构National Key R & D Program of China (Grant No. 2018YFB1304600) ; Natural Science Foundation of China (Grant No. 51775541) ; CAS Interdisciplinary Innovation Team (Grant No. JCTD-2018-11)
源URL[http://ir.sia.cn/handle/173321/29800]  
专题沈阳自动化研究所_空间自动化技术研究室
中国科学院沈阳自动化研究所
通讯作者Liu JG(刘金国)
作者单位1.State Key Laboratory of Robotics, Shenyang Institute of Automation (SIA), Chinese Academy of Sciences (CAS), China
2.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences (CAS), China
3.University of the Chinese Academy of Science, Beijing, China
推荐引用方式
GB/T 7714
Tong YC,Liu JG. Novel power-exponent-type modified RNN for RMP scheme of redundant manipulators with noise and physical constraints[J]. Neurocomputing,2022,467:266-281.
APA Tong YC,&Liu JG.(2022).Novel power-exponent-type modified RNN for RMP scheme of redundant manipulators with noise and physical constraints.Neurocomputing,467,266-281.
MLA Tong YC,et al."Novel power-exponent-type modified RNN for RMP scheme of redundant manipulators with noise and physical constraints".Neurocomputing 467(2022):266-281.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。