中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Learning Through Deterministic Assignment of Hidden Parameters

文献类型:期刊论文

作者Fang, Jian2; Lin SB(林绍波)1,3; Xu ZB(徐宗本)2
刊名IEEE Transactions on Cybernetics
出版日期2020
卷号50期号:5页码:2321-2334
关键词Bright parameters hidden parameters learning rate neural networks supervised learning
ISSN号2168-2267
产权排序2
英文摘要

Supervised learning frequently boils down to determining hidden and bright parameters in a parameterized hypothesis space based on finite input-output samples. The hidden parameters determine the nonlinear mechanism of an estimator, while the bright parameters characterize the linear mechanism. In a traditional learning paradigm, hidden and bright parameters are not distinguished and trained simultaneously in one learning process. Such a one-stage learning (OSL) brings a benefit of theoretical analysis but suffers from the high computational burden. In this paper, we propose a two-stage learning scheme, learning through deterministic assignment of hidden parameters (LtDaHPs), suggesting to deterministically generate the hidden parameters by using minimal Riesz energy points on a sphere and equally spaced points in an interval. We theoretically show that with such a deterministic assignment of hidden parameters, LtDaHP with a neural network realization almost shares the same generalization performance with that of OSL. Then, LtDaHP provides an effective way to overcome the high computational burden of OSL. We present a series of simulations and application examples to support the outperformance of LtDaHP.

WOS关键词NEURAL-NETWORKS ; APPROXIMATION ; MACHINE ; ENERGY ; ENTROPY ; POINTS
资助项目National Natural Science Foundation of China[61876133] ; National Natural Science Foundation of China[11771021] ; State Key Laboratory of Robotics[2018-05]
WOS研究方向Automation & Control Systems ; Computer Science
语种英语
WOS记录号WOS:000528622000046
资助机构National Natural Science Foundation of China under Grant 61876133 and Grant 11771021 ; State Key Laboratory of Robotics (2018-05)
源URL[http://ir.sia.cn/handle/173321/23937]  
专题沈阳自动化研究所_机器人学研究室
通讯作者Lin SB(林绍波)
作者单位1.Department of Mathematics, Wenzhou University, Wenzhou 325035, China
2.School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710048, China.
3.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China (e-mail: sblin1983@gmail.com).
推荐引用方式
GB/T 7714
Fang, Jian,Lin SB,Xu ZB. Learning Through Deterministic Assignment of Hidden Parameters[J]. IEEE Transactions on Cybernetics,2020,50(5):2321-2334.
APA Fang, Jian,Lin SB,&Xu ZB.(2020).Learning Through Deterministic Assignment of Hidden Parameters.IEEE Transactions on Cybernetics,50(5),2321-2334.
MLA Fang, Jian,et al."Learning Through Deterministic Assignment of Hidden Parameters".IEEE Transactions on Cybernetics 50.5(2020):2321-2334.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。