Learning Through Deterministic Assignment of Hidden Parameters
文献类型:期刊论文
作者 | Fang, Jian2; Lin SB(林绍波)1,3; Xu ZB(徐宗本)2 |
刊名 | IEEE Transactions on Cybernetics
![]() |
出版日期 | 2020 |
卷号 | 50期号:5页码:2321-2334 |
关键词 | Bright parameters hidden parameters learning rate neural networks supervised learning |
ISSN号 | 2168-2267 |
产权排序 | 2 |
英文摘要 | Supervised learning frequently boils down to determining hidden and bright parameters in a parameterized hypothesis space based on finite input-output samples. The hidden parameters determine the nonlinear mechanism of an estimator, while the bright parameters characterize the linear mechanism. In a traditional learning paradigm, hidden and bright parameters are not distinguished and trained simultaneously in one learning process. Such a one-stage learning (OSL) brings a benefit of theoretical analysis but suffers from the high computational burden. In this paper, we propose a two-stage learning scheme, learning through deterministic assignment of hidden parameters (LtDaHPs), suggesting to deterministically generate the hidden parameters by using minimal Riesz energy points on a sphere and equally spaced points in an interval. We theoretically show that with such a deterministic assignment of hidden parameters, LtDaHP with a neural network realization almost shares the same generalization performance with that of OSL. Then, LtDaHP provides an effective way to overcome the high computational burden of OSL. We present a series of simulations and application examples to support the outperformance of LtDaHP. |
WOS关键词 | NEURAL-NETWORKS ; APPROXIMATION ; MACHINE ; ENERGY ; ENTROPY ; POINTS |
资助项目 | National Natural Science Foundation of China[61876133] ; National Natural Science Foundation of China[11771021] ; State Key Laboratory of Robotics[2018-05] |
WOS研究方向 | Automation & Control Systems ; Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000528622000046 |
资助机构 | National Natural Science Foundation of China under Grant 61876133 and Grant 11771021 ; State Key Laboratory of Robotics (2018-05) |
源URL | [http://ir.sia.cn/handle/173321/23937] ![]() |
专题 | 沈阳自动化研究所_机器人学研究室 |
通讯作者 | Lin SB(林绍波) |
作者单位 | 1.Department of Mathematics, Wenzhou University, Wenzhou 325035, China 2.School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710048, China. 3.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China (e-mail: sblin1983@gmail.com). |
推荐引用方式 GB/T 7714 | Fang, Jian,Lin SB,Xu ZB. Learning Through Deterministic Assignment of Hidden Parameters[J]. IEEE Transactions on Cybernetics,2020,50(5):2321-2334. |
APA | Fang, Jian,Lin SB,&Xu ZB.(2020).Learning Through Deterministic Assignment of Hidden Parameters.IEEE Transactions on Cybernetics,50(5),2321-2334. |
MLA | Fang, Jian,et al."Learning Through Deterministic Assignment of Hidden Parameters".IEEE Transactions on Cybernetics 50.5(2020):2321-2334. |
入库方式: OAI收割
来源:沈阳自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。