中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Rescaled Boosting in Classification

文献类型:期刊论文

作者Wang Y(王尧)3,4,5; Liao, Xu1; Lin SB(林绍波)2,3
刊名IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
出版日期2019
卷号30期号:9页码:2598-2610
关键词Boosting generalization error numerical convergence rate resealed boosting (RBoosting)
ISSN号2162-237X
产权排序1
英文摘要

Boosting is a learning scheme that combines weak learners to produce a strong composite learner, with the underlying intuition that one can obtain accurate learner by combining "rough" ones. This paper aims at developing a new boosting strategy, called resealed boosting (RBoosting), to accelerate the numerical convergence rate and, consequently, improve learning performances of the original boosting. Our studies show that RBoosting possesses the almost optimal numerical convergence rate in the sense that, up to a logarithmic factor, it can reach the minimax nonlinear approximation rate. We then use RBoosting to tackle classification problems and deduce corresponding statistical consistency and tight generalization error estimates. A series of' theoretical and experimental results shows that RBoosting outperforms boosting in terms of generalization.

WOS关键词REGRESSION ; APPROXIMATION ; CONVERGENCE ; ALGORITHMS ; STRENGTH
资助项目National Natural Science Foundation of China[11501440] ; National Natural Science Foundation of China[61876133] ; National Natural Science Foundation of China[91546119] ; China Postdoctoral Science Foundation[2017M610628] ; China Postdoctoral Science Foundation[2018T111031] ; Key Research Program of Hunan Province, China[2017GK2273] ; State Key Laboratory of Robotics[2018-O05]
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000482589400003
资助机构National Natural Science Foundation of China [11501440, 61876133, 91546119] ; China Postdoctoral Science Foundation [2017M610628, 2018T111031] ; Key Research Program of Hunan Province, China [2017GK2273] ; State Key Laboratory of Robotics [2018-O05]
源URL[http://ir.sia.cn/handle/173321/25612]  
专题沈阳自动化研究所_机器人学研究室
通讯作者Lin SB(林绍波)
作者单位1.School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China
2.Department of Mathematics, Wenzhou University, Wenzhou 325035, China
3.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
4.School of Management, Xi’an Jiaotong University, Xi’an 710049, China
5.Research Institute for Mathematics and Mathematical Technology, Xi’an Jiaotong University, Xi’an 710049, China
推荐引用方式
GB/T 7714
Wang Y,Liao, Xu,Lin SB. Rescaled Boosting in Classification[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2019,30(9):2598-2610.
APA Wang Y,Liao, Xu,&Lin SB.(2019).Rescaled Boosting in Classification.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,30(9),2598-2610.
MLA Wang Y,et al."Rescaled Boosting in Classification".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 30.9(2019):2598-2610.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。