Rescaled Boosting in Classification
文献类型:期刊论文
作者 | Wang Y(王尧)3,4,5; Liao, Xu1; Lin SB(林绍波)2,3 |
刊名 | IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
![]() |
出版日期 | 2019 |
卷号 | 30期号:9页码:2598-2610 |
关键词 | Boosting generalization error numerical convergence rate resealed boosting (RBoosting) |
ISSN号 | 2162-237X |
产权排序 | 1 |
英文摘要 | Boosting is a learning scheme that combines weak learners to produce a strong composite learner, with the underlying intuition that one can obtain accurate learner by combining "rough" ones. This paper aims at developing a new boosting strategy, called resealed boosting (RBoosting), to accelerate the numerical convergence rate and, consequently, improve learning performances of the original boosting. Our studies show that RBoosting possesses the almost optimal numerical convergence rate in the sense that, up to a logarithmic factor, it can reach the minimax nonlinear approximation rate. We then use RBoosting to tackle classification problems and deduce corresponding statistical consistency and tight generalization error estimates. A series of' theoretical and experimental results shows that RBoosting outperforms boosting in terms of generalization. |
WOS关键词 | REGRESSION ; APPROXIMATION ; CONVERGENCE ; ALGORITHMS ; STRENGTH |
资助项目 | National Natural Science Foundation of China[11501440] ; National Natural Science Foundation of China[61876133] ; National Natural Science Foundation of China[91546119] ; China Postdoctoral Science Foundation[2017M610628] ; China Postdoctoral Science Foundation[2018T111031] ; Key Research Program of Hunan Province, China[2017GK2273] ; State Key Laboratory of Robotics[2018-O05] |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000482589400003 |
资助机构 | National Natural Science Foundation of China [11501440, 61876133, 91546119] ; China Postdoctoral Science Foundation [2017M610628, 2018T111031] ; Key Research Program of Hunan Province, China [2017GK2273] ; State Key Laboratory of Robotics [2018-O05] |
源URL | [http://ir.sia.cn/handle/173321/25612] ![]() |
专题 | 沈阳自动化研究所_机器人学研究室 |
通讯作者 | Lin SB(林绍波) |
作者单位 | 1.School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China 2.Department of Mathematics, Wenzhou University, Wenzhou 325035, China 3.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 4.School of Management, Xi’an Jiaotong University, Xi’an 710049, China 5.Research Institute for Mathematics and Mathematical Technology, Xi’an Jiaotong University, Xi’an 710049, China |
推荐引用方式 GB/T 7714 | Wang Y,Liao, Xu,Lin SB. Rescaled Boosting in Classification[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2019,30(9):2598-2610. |
APA | Wang Y,Liao, Xu,&Lin SB.(2019).Rescaled Boosting in Classification.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,30(9),2598-2610. |
MLA | Wang Y,et al."Rescaled Boosting in Classification".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 30.9(2019):2598-2610. |
入库方式: OAI收割
来源:沈阳自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。