Low-rank decomposition on transformed feature maps domain for image denoising
文献类型:期刊论文
作者 | Luo Q(罗琼)1,4,5![]() ![]() ![]() ![]() |
刊名 | Visual Computer
![]() |
出版日期 | 2021 |
卷号 | 37期号:7页码:1899-1915 |
关键词 | Low-rank Domain transformation Autoencoder Denoising |
ISSN号 | 0178-2789 |
产权排序 | 1 |
英文摘要 | Low-rank based models are proved outstanding for denoising on the data with strong repetitive or redundant property. However, for natural images with complex structures or rich details, the performance drops down because of the weak low-rankness of the data. A feasible solution is to transform the data into a suitable domain to further explore the underlying low-rank information. In this paper, we present a novel approach to create such a domain via a fully replicated linear autoencoder network. By applying various low-rank models to the feature maps generated by the encoder rather than the original data, and then performing inverse transformation by the decoder, their denoising performances all get enhanced. In addition, feature maps also show good sparsity, hence we introduce a new measure combining sparse and low-rank regularity, and further propose corresponding single image denoising model. Extensive experiments show the superiority of our work. |
WOS关键词 | RECOVERY ; SPARSE |
资助项目 | National Natural Science Foundation of China[61773367] ; National Natural Science Foundation of China[61303168] ; National Natural Science Foundation of China[61821005] ; Youth Innovation Promotion Association of the Chinese Academy of Sciences[2016183] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000556153200001 |
资助机构 | National Natural Science Foundation of China under Grant 61773367, Grant 61303168, and Grant 61821005 ; Youth Innovation Promotion Association of the Chinese Academy of ences under Grant 2016183 |
源URL | [http://ir.sia.cn/handle/173321/27480] ![]() |
专题 | 沈阳自动化研究所_机器人学研究室 |
通讯作者 | Han Z(韩志) |
作者单位 | 1.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China 2.Department of Computer Science, City University of Hong Kong, Kowloon Tong 3.Hongkong, China 4.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China 5.University of Chinese Academy of Sciences, Beijing, China |
推荐引用方式 GB/T 7714 | Luo Q,Liu BC,Zhang Y,et al. Low-rank decomposition on transformed feature maps domain for image denoising[J]. Visual Computer,2021,37(7):1899-1915. |
APA | Luo Q,Liu BC,Zhang Y,Han Z,&Tang YD.(2021).Low-rank decomposition on transformed feature maps domain for image denoising.Visual Computer,37(7),1899-1915. |
MLA | Luo Q,et al."Low-rank decomposition on transformed feature maps domain for image denoising".Visual Computer 37.7(2021):1899-1915. |
入库方式: OAI收割
来源:沈阳自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。