中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Automatic AFM Images Distortion Correction Based on Adaptive Feature Recognition Algorithm

文献类型:会议论文

作者Yang, Chengpeng2,3; Wang, Shoujin3; Hao, Chunxue2,3; Yang Y(杨洋)1,2; Shi JL(施佳林)1,2; Yu P(于鹏)1,2
出版日期2020
会议日期November 6-8, 2023
会议地点Shanghai, China
关键词AFM edge detection adaptive threshold least squares fitting horizontal distortion
页码4981-4986
英文摘要Atomic Force Microscope (AFM) images will appear tilt and bending of the image background due to the tilt angle between the sample surface and the probe, thermal noise of system, or external vibration of environment. Feature recognition is very crucial for removing unstable imaging background when using the least square fitting method to horizontally correct the AFM full image, which the topography structures higher or lower than the sample substrate will affect the fitting correction results. To realize universal automatic correction of AFM images, this paper proposes an adaptive feature recognition algorithm based on improved image edge detection method to automatically identify, frame and mark the features and then remove the detorsion background using Least Squares Fitting Correction. The experiment results show that this method can realize adaptive feature recognition and automatic fitting correction of the whole image, and improve the correction accuracy.
产权排序1
会议录Proceedings - 2020 Chinese Automation Congress, CAC 2020
会议录出版者IEEE
会议录出版地New York
语种英语
ISBN号978-1-7281-7687-1
WOS记录号WOS:000678697005017
源URL[http://ir.sia.cn/handle/173321/28369]  
专题沈阳自动化研究所_机器人学研究室
通讯作者Yang, Chengpeng
作者单位1.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
3.School of Information and Control Engineering, Shenyang Jianzhu University
推荐引用方式
GB/T 7714
Yang, Chengpeng,Wang, Shoujin,Hao, Chunxue,et al. Automatic AFM Images Distortion Correction Based on Adaptive Feature Recognition Algorithm[C]. 见:. Shanghai, China. November 6-8, 2023.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。