中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Underwater Object Detection based on YOLO-v3 network

文献类型:会议论文

作者Wang YM(王艳美)3,4,5; Liu JX(刘佳鑫)1; Yu SQ(余思泉)3,5; Wang, Kai2; Han Z(韩志)3,5; Tang YD(唐延东)3,5
出版日期2021
会议日期October 15-17, 2021
会议地点Beijing, China
关键词underwater object detection YOLO-v3 network side scan sonar image underwater object dataset
页码571-575
英文摘要Recently, side scan sonar (SSS) is increasingly applied to underwater search, which can display the microgeomorphic morphology and distribution, and obtain a continuous two-dimensional submarine acoustic map with a certain width. Automatic underwater object detection methods can help a lot in case of long searches, where sonar operators may feel exhausted and therefore miss the possible object. This paper proposes an underwater object detection method based on YOLO-v3 network. We first establish a real side scan sonar image data-set, which includes 7000 sonar images with four types of objects. Secondly, we propose an underwater object detection system based on side scan sonar images and YOLO-v3 network. Finally, we carried out extensive experiments in the real underwater environment to prove the effectiveness of our algorithm. Our work indicates that the YOLO-v3 network is an effective way to improve the accuracy of underwater object detection.
源文献作者Beijing Institute of Technology ; Chinese Institute of Command and Control (CICC) ; IEEE Beijing Section ; Tongji University
产权排序1
会议录Proceedings of 2021 IEEE International Conference on Unmanned Systems, ICUS 2021
会议录出版者IEEE
会议录出版地New York
语种英语
ISBN号978-0-7381-4657-7
源URL[http://ir.sia.cn/handle/173321/30352]  
专题沈阳自动化研究所_机器人学研究室
通讯作者Wang YM(王艳美)
作者单位1.State Grid Liaoning Electric Power Research Institute, Shenyang, China
2.State Grid Shandong Electric Power Company, Jinan, China
3.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences. Shenyang, China
4.University of Chinese Academy of Sciences. Shenyang, China
5.State Key Laboratory of Robotics Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
推荐引用方式
GB/T 7714
Wang YM,Liu JX,Yu SQ,et al. Underwater Object Detection based on YOLO-v3 network[C]. 见:. Beijing, China. October 15-17, 2021.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。