移动机器人优先采样D3QN路径规划方法研究
文献类型:期刊论文
作者 | 袁帅1,2; 张莉莉1; 顾琦然1; 张凤1; 吕佳琪1 |
刊名 | 小型微型计算机系统
![]() |
出版日期 | 2022 |
页码 | 1-8 |
关键词 | DQN D3QN-PER LSTM 最优路径 |
ISSN号 | 1000-1220 |
其他题名 | Research on D3QN Path Planning Method of Mobile Robot Priority Sampling |
产权排序 | 1 |
英文摘要 | 近年来,以DQN(Deep Q-Network)为代表的人工智能技术在路径规划领域中广泛应用。为了解决传统DQN方法存在收敛速度较慢的问题,本文提出一种端到端的D3QN-PER(Dueling Deep Double Q-Network Prioritized Experience Replay)路径规划方法。首先,在感知端引入长短时记忆网络(Long Short-Term Memory),障碍物状态信息作为输入,进行取舍后储存在隐藏层,再转换成固定长度的向量和机器人自身状态向量输入至D3QN网络,提高记忆和认知障碍物的能力。然后,采用优先经验回放机制(Prioritized Experience Replay,PER)对经验池抽取小批量样本,保证样本多样性的同时提高重要样本的利用率,获取更加精确的Q值。最后,通过3个不同仿真场景进行验证,分别对DQN、DDQN、D3QN、D3QN-PER展开训练,实验结果表明,与其他方法相比,D3QN-PER的收敛速度比DQN算法提高56%,而且到达目标点的次数更多,可证明该方法在未知环境中可以更好地获取最优路径。 |
语种 | 中文 |
资助机构 | 国家自然科学基金面上项目(62073227) ; 辽宁省自然科学基金面上项目(20180520037) ; 辽宁省教育厅基本科研项目面上项目(LJKZ0581) |
源URL | [http://ir.sia.cn/handle/173321/30543] ![]() |
专题 | 沈阳自动化研究所_机器人学研究室 |
通讯作者 | 袁帅 |
作者单位 | 1.沈阳建筑大学信息与控制工程学院 2.中国科学院沈阳自动化研究所 |
推荐引用方式 GB/T 7714 | 袁帅,张莉莉,顾琦然,等. 移动机器人优先采样D3QN路径规划方法研究[J]. 小型微型计算机系统,2022:1-8. |
APA | 袁帅,张莉莉,顾琦然,张凤,&吕佳琪.(2022).移动机器人优先采样D3QN路径规划方法研究.小型微型计算机系统,1-8. |
MLA | 袁帅,et al."移动机器人优先采样D3QN路径规划方法研究".小型微型计算机系统 (2022):1-8. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。