中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Robust template matching algorithm with multi-feature using best-buddies similarity

文献类型:会议论文

作者Jiang SP(江苏蓬)1,2,3,4,5; Xiang W(向伟)1,3,4,5; Liu YP(刘云鹏)1,3,4,5
出版日期2019
会议日期August 28-30, 2019
会议地点Shenyang, China
关键词Template Matching Best-Buddies Similarity HOG Feature Confidence Map
页码1-6
英文摘要In order to solve the problem of matching failure of BBS (Best-Buddies Similarity) algorithm when the target image has a partial occlusion, cluttered background, imbalance illumination, and nonrigid deformation. A multi-feature template matching algorithm based on the BBS algorithm is proposed in this paper. On the basis of the location features and appearance features, we add HOG (Histogram of Oriented Gradients) features to make full use of the color, position and structural contour of the target image to match. In addition, we also perform mean filtering on the confidence map. The experimental results show that the AUC (Area Under Curve) score of the proposed algorithm is 0.6119, which is 6.38% higher than the BBS algorithm. Moreover, our algorithm has stronger robustness and higher matching accuracy.
源文献作者Chinese Society for Optical Engineering
产权排序1
会议录Second Target Recognition and Artificial Intelligence Summit Forum
会议录出版者SPIE
会议录出版地Bellingham, USA
语种英语
ISSN号0277-786X
ISBN号978-1-5106-3631-6
WOS记录号WOS:000546230500067
源URL[http://ir.sia.cn/handle/173321/26417]  
专题沈阳自动化研究所_光电信息技术研究室
通讯作者Jiang SP(江苏蓬)
作者单位1.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
2.University of Chinese Academy of Sciences, Beijing, China
3.Key Laboratory of Opto-Electronic Information Processing, CAS, Shenyang, China
4.Key Lab of Image Understanding and Computer Vision, Shenyang, China
5.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
推荐引用方式
GB/T 7714
Jiang SP,Xiang W,Liu YP. Robust template matching algorithm with multi-feature using best-buddies similarity[C]. 见:. Shenyang, China. August 28-30, 2019.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。