中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Autonomous Sub-domain Modeling for Dialogue Policy with Hierarchical Deep Reinforcement Learning

文献类型:会议论文

作者Kristianto, Giovanni Yoko2; Zhang HW(张会文)1,3; Tong, Bin2; Iwayama, Makoto2; Kobayashi, Yoshiyuki2
出版日期2018
会议日期October 31, 2018
会议地点Brussels, Belgium
页码9-16
英文摘要Solving composites tasks, which consist of several inherent sub-tasks, remains a challenge in the research area of dialogue. Current studies have tackled this issue by manually decomposing the composite tasks into several sub-domains. However, much human effort is inevitable. This paper proposes a dialogue framework that autonomously models meaningful sub-domains and learns the policy over them. Our experiments show that our framework outperforms the baseline without sub-domains by 11% in terms of success rate, and is competitive with that with manually defined sub-domains.
产权排序2
会议录2nd International Workshop on Search-Oriented Conversational AI, SCAI 2018
会议录出版者Association for Computational Linguistics
会议录出版地Stroudsburg PA, USA
语种英语
ISBN号978-1-948087-75-9
源URL[http://ir.sia.cn/handle/173321/30279]  
专题沈阳自动化研究所_空间自动化技术研究室
通讯作者Kristianto, Giovanni Yoko
作者单位1.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
2.Hitachi Central Research Laboratory, Tokyo, Japan
3.University of Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Kristianto, Giovanni Yoko,Zhang HW,Tong, Bin,et al. Autonomous Sub-domain Modeling for Dialogue Policy with Hierarchical Deep Reinforcement Learning[C]. 见:. Brussels, Belgium. October 31, 2018.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。