基于静态分析和神经网络的软件故障预测技术的构建方法
文献类型:专利
作者 | 杨顺昆; 苟晓冬; 黄婷婷; 郑征; 于海斌![]() ![]() ![]() |
发表日期 | 2018-03-23 |
著作权人 | 北京航空航天大学 ; 中国科学院沈阳自动化研究所 |
国家 | 中国 |
文献子类 | 发明授权 |
产权排序 | 2 |
其他题名 | Static analysis and neural network based software failure prediction technique construction method |
英文摘要 | 本发明提供一种基于静态分析和神经网络的软件故障预测技术的构建方法,步骤如下:1、搜集被诊断软件的有效故障,加入到创建的故障案例库;2、统计软件各历史版本的有效故障的次数;3、使用静态分析工具扫描软件源代码,输出复杂度度量值;4、进行相关性分析,计算故障次数与度量值的显著性水平;5、选出与故障次数具有显著相关性的复杂度度量值;6、构建网络训练输入输出矩阵和预测输入矩阵;7、构建BP神经网络;8、完成网络训练,构建故障预测系统;9、神经网络预测,预测新版本的故障数量。通过上述步骤,可以完成对基于静态分析和BP神经网络的软件故障预测技术的构建。本发明能帮助开发者预测可能发生的软件故障,具有实用价值。 |
公开日期 | 2020-08-25 |
申请日期 | 2017-11-13 |
语种 | 中文 |
状态 | 有权 |
源URL | [http://ir.sia.cn/handle/173321/27611] ![]() |
专题 | 沈阳自动化研究所_工业控制网络与系统研究室 |
作者单位 | 1.北京航空航天大学 2.中国科学院沈阳自动化研究所 |
推荐引用方式 GB/T 7714 | 杨顺昆,苟晓冬,黄婷婷,等. 基于静态分析和神经网络的软件故障预测技术的构建方法. 2018-03-23. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。