中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Edge computing-based defect identification model of power IoT edge side devices

文献类型:会议论文

作者Li DW(李大伟)1; Jia GT(贾耕涛)1; Song CH(宋纯贺)2,3,4; Yu SM(于诗矛)2,3,4
出版日期2020
会议日期November 6-8, 2020
会议地点Chongqing, China
关键词Edge computing isolated forest smart sensor fault diagnosis
页码728-732
英文摘要There are various types of devices on the terminal side of the power Internet of Things, and the data collected through various sensors shows an exponential growth. The current in-depth application of edge computing technology can not only ease the pressure of network transmission, but also improve the timeliness of fault diagnosis. Edge computing technology is A new way to solve the fault diagnosis of equipment on the edge of the power grid. From the perspective of edge fault diagnosis, this paper expounds the fault diagnosis model of power IoT edge devices based on edge computing, and combines the isolated forest algorithm to design smart sensor data-based power IoT edge device fault diagnosis algorithms. Finally, the validity of the proposed framework model is verified by public sample data. © 2020 IEEE.
源文献作者Chengdu Global Union Academy of Science and Technology ; Chongqing Geeks Education Technology Co., Ltd ; Chongqing Global Union Academy of Science and Technology ; Chongqing University of Technology ; Global Union Academy of Science and Technology ; IEEE Beijing Section
产权排序2
会议录Proceedings of 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence, ICIBA 2020
会议录出版者IEEE
会议录出版地New York
语种英语
ISBN号978-1-7281-5224-0
源URL[http://ir.sia.cn/handle/173321/28216]  
专题沈阳自动化研究所_工业控制网络与系统研究室
通讯作者Li DW(李大伟)
作者单位1.Start Grid Shanghai Information Telecommunication Company, Shanghai 200122, China
2.Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China
3.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 11016, China
4.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
推荐引用方式
GB/T 7714
Li DW,Jia GT,Song CH,et al. Edge computing-based defect identification model of power IoT edge side devices[C]. 见:. Chongqing, China. November 6-8, 2020.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。