DEEP REINFORCEMENT LEARNING-BASED INDUSTRIAL 5G DYNAMIC MULTI-PRIORITY MULTI-ACCESS METHOD
文献类型:专利
作者 | Yu HB(于海斌)![]() ![]() ![]() ![]() ![]() ![]() |
发表日期 | 2021-11-18 |
著作权人 | SHENYANG INSTITUTE OF AUTOMATION, CHINESE ACADEMY OF SCIENCES |
国家 | 世界专利组织 |
文献子类 | 发明 |
产权排序 | 1 |
其他题名 | 基于深度强化学习的工业5G动态多优先级多接入方法 |
英文摘要 | The present invention relates to industrial 5G network technology, and specifically relates to a deep reinforcement learning-based industrial 5G dynamic multi-priority multi-access method. The method comprises the following steps: establishing an industrial 5G network model; establishing a deep reinforcement learning-based dynamic multi-priority multi-channel access neural network model; collecting status, action, and reward information of all industrial 5G terminals in the industrial 5G network in multiple time slots as training data; using the collected data to train the neural network model until the packet loss rate and end-to-end delay meet requirements for industrial communication; collecting status information of all industrial 5G terminals in the industrial 5G network in a current time slot and using same as an input of the neural network model for multi-priority channel allocation, and the industrial 5G terminals perform multiple access according to the channel allocation resu...(前1000字) |
申请日期 | 2020-12-25 |
语种 | 英语 |
状态 | 公开 |
源URL | [http://ir.sia.cn/handle/173321/30139] ![]() |
专题 | 沈阳自动化研究所_工业控制网络与系统研究室 |
作者单位 | SHENYANG INSTITUTE OF AUTOMATION, CHINESE ACADEMY OF SCIENCES |
推荐引用方式 GB/T 7714 | Yu HB,Liu XY,Xu C,et al. DEEP REINFORCEMENT LEARNING-BASED INDUSTRIAL 5G DYNAMIC MULTI-PRIORITY MULTI-ACCESS METHOD. 2021-11-18. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。