A key performance indicator-relevant approach based on kernel entropy component regression model for industrial system
文献类型:期刊论文
作者 | Sun, Chengyuan1; Kang HB(康浩博)2![]() ![]() |
刊名 | OPTIMAL CONTROL APPLICATIONS & METHODS
![]() |
出版日期 | 2021 |
页码 | 1-16 |
关键词 | fault detection KECA KECR KPI-relevant |
ISSN号 | 0143-2087 |
产权排序 | 2 |
英文摘要 | Key performance indicator (KPI)-relevant fault detection method has been raised for decades to hugely increase the economic interest of modern industries. However, the typical data-driven approaches like the kernel principal component analysis (KPCA) and the kernel entropy analysis (KECA) are inefficient to consider the influence taken by the fault factor on the KPI. Thus, in this work, an algorithm called the kernel entropy regression (KECR) is proposed to enhance the interpretability between the fault and the KPI. The proposed algorithm captures the information relevant to the KPI state in the subspace and rewords the decomposition of the KECA method. The angular structure of the KECR method achieves an accurate partition for process variables to hugely decrease false detection results. In the end, an industrial case is utilized to demonstrate the effectiveness of the KECR method. |
WOS关键词 | FAULT-DETECTION |
资助项目 | Fundamental Research Funds for the Central Universities[N2004018] ; National Key Research and Development Program of China[SQ2019YFE020319] ; National Science of Foundation China[61420106016] ; National Science of Foundation China[6162100] ; National Science of Foundation China[61873306] ; National Science of Foundation China[U1908213] ; State Key Laboratory of Synthetical Automation for Process Industries[2018ZCX19] ; State Key Laboratory of Synthetical Automation for Process Industries[SAPI2019-3] ; Zhejiang Lab[2019NB0AB07] |
WOS研究方向 | Automation & Control Systems ; Operations Research & Management Science ; Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000691121000001 |
资助机构 | Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities [N2004018] ; National Key Research and Development Program of China [SQ2019YFE020319] ; National Science of Foundation China [61420106016, 6162100, 61873306, U1908213] ; State Key Laboratory of Synthetical Automation for Process Industries [2018ZCX19, SAPI2019-3] ; Zhejiang Lab [2019NB0AB07] |
源URL | [http://ir.sia.cn/handle/173321/29552] ![]() |
专题 | 沈阳自动化研究所_智能检测与装备研究室 |
通讯作者 | Kang HB(康浩博) |
作者单位 | 1.College of Information Science and Engineering, Northeastern University, Shenyang, China 2.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning Province 110169, China. |
推荐引用方式 GB/T 7714 | Sun, Chengyuan,Kang HB,Ma HJ,et al. A key performance indicator-relevant approach based on kernel entropy component regression model for industrial system[J]. OPTIMAL CONTROL APPLICATIONS & METHODS,2021:1-16. |
APA | Sun, Chengyuan,Kang HB,Ma HJ,&Bai, Hua.(2021).A key performance indicator-relevant approach based on kernel entropy component regression model for industrial system.OPTIMAL CONTROL APPLICATIONS & METHODS,1-16. |
MLA | Sun, Chengyuan,et al."A key performance indicator-relevant approach based on kernel entropy component regression model for industrial system".OPTIMAL CONTROL APPLICATIONS & METHODS (2021):1-16. |
入库方式: OAI收割
来源:沈阳自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。