AttentiveHerb: A Novel Method for Traditional Medicine Prescription Generation
文献类型:期刊论文
作者 | Liu Z(刘智)1,2,3; Zheng ZY(郑泽宇)1,3![]() ![]() ![]() |
刊名 | IEEE ACCESS
![]() |
出版日期 | 2019 |
卷号 | 7页码:139069-139085 |
关键词 | Attention mechanism deep learning neural network sequence learning traditional herbal medicine |
ISSN号 | 2169-3536 |
产权排序 | 1 |
英文摘要 | In this paper, we propose a novel intelligent model, called AttentiveHerb, for simulating the doctor's inquiry and prescription that is composed by a series of herbs. It can automatically simulate some principles and learns the interaction between symptoms and herbs from clinical records of traditional herbal medicine. This model consists of two different attention mechanisms for distinguishing the main symptoms and paying different attention to different symptoms. By experiments, in terms of the predicted prescriptions, 51% of the total cases are in full accordance with the labels; in 1.09% of cases, all herbs of a label can be found in the predicted prescription and the predicted prescription have other additional herbs; in 15.4% of cases, all herbs of a predicted prescription can be found in their corresponding label; in 22.41% of cases, several herbs in each predicted prescription overlap with its label; and 10.1% of cases are completely different from the label. In summary, 67.49% of the predicted prescriptions are close to the labels, and 89.9% contain the same herbs with the labels, which indicates that the prescriptions generated by our model are close to those by doctors. Besides, our model can recommend herbs that do not appear in the label prescriptions but are useful for relieving symptoms. It shows that our model can learn some interactions between herbs and symptoms. With enough normalized traditional herbal medical records, this model works more accurately. This study also provides a benchmark for the upcoming researches in intelligent inquiry and prescription generation of traditional herbal medicine. |
资助项目 | National Key Research and Devleopment Program of China[2018YFF0214704] ; Liaoning Province Education Department Scientific Research Foundation of China[L2019027] ; Liaoning Province Dr. Research Foundation of China[20170520135] |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
语种 | 英语 |
WOS记录号 | WOS:000498810100001 |
资助机构 | National Key Research and Devleopment Program of China [2018YFF0214704] ; Liaoning Province Education Department Scientific Research Foundation of China [L2019027] ; Liaoning Province Dr. Research Foundation of China [20170520135] |
源URL | [http://ir.sia.cn/handle/173321/25981] ![]() |
专题 | 沈阳自动化研究所_数字工厂研究室 |
通讯作者 | Zheng ZY(郑泽宇); Qi, Liang |
作者单位 | 1.Department of Digital Factory, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 2.University of Chinese Academy of Sciences, Beijing 100049, China 3.Institutes for Robotics and Intelligent Manufacturing, Shenyang 110016, China 4.School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China 5.Department of Intelligent Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China 6.School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 7.Computer and Communication Engineering College, Liaoning Shihua University, Fushun 113001, China 8.Helen and John C. Hartmann Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA |
推荐引用方式 GB/T 7714 | Liu Z,Zheng ZY,Guo XW,et al. AttentiveHerb: A Novel Method for Traditional Medicine Prescription Generation[J]. IEEE ACCESS,2019,7:139069-139085. |
APA | Liu Z.,Zheng ZY.,Guo XW.,Qi, Liang.,Gui J.,...&Jin, Luyao.(2019).AttentiveHerb: A Novel Method for Traditional Medicine Prescription Generation.IEEE ACCESS,7,139069-139085. |
MLA | Liu Z,et al."AttentiveHerb: A Novel Method for Traditional Medicine Prescription Generation".IEEE ACCESS 7(2019):139069-139085. |
入库方式: OAI收割
来源:沈阳自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。