Inversion Based on a Detached Dual-channel Domain Method for StyleGAN2 Embedding
文献类型:期刊论文
作者 | Yang N(杨楠)1,5,6,7![]() |
刊名 | IEEE Signal Processing Letters
![]() |
出版日期 | 2021 |
卷号 | 28页码:553-557 |
关键词 | Deep Learning Generative Adversarial Networks Image Reconstruction Latent Code Optimization |
ISSN号 | 1070-9908 |
产权排序 | 1 |
英文摘要 | A style-based generative adversarial network (Style- GAN2) yields remarkable results in image-to-latent embedding. This work proposes a Detached Dual-channel Domain Encoder as an effective and robust method to embed an image to a latent code, i.e., GAN inversion. It infers a latent code from two aspects: a) a detached dual-channel design to support faithful image reconstruction; and b) a local skip connection that allows conveying pieces of information with image details. We further introduce a hierarchical progressive training strategy that allows the proposed encoder to separately capture different semantic features. The qualitative and quantitative experimental results show that the well-trained encodercan embed an image into a latent code in StyleGAN2 latent space with less time than its peers while preserving facial identity and image details well. |
资助项目 | National Natural Science Foundation of China[61773367] ; National Natural Science Foundation of China[61903358] ; National Natural Science Foundation of China[61903229] ; National Key Research and Development Program of China[2020YFB1313400] |
WOS研究方向 | Engineering |
语种 | 英语 |
WOS记录号 | WOS:000633387100003 |
资助机构 | National Natural Science Foundation of China ; National Key Research and Development Program of China |
源URL | [http://ir.sia.cn/handle/173321/28501] ![]() |
专题 | 沈阳自动化研究所_数字工厂研究室 |
通讯作者 | Zhou MC(周孟初) |
作者单位 | 1.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China 2.Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982 USA 3.Computer and Communication Engineering College, Liaoning Shihua University, Fushun, 113001, China 4.College of Computer Science and Engineering at Shandong University of Science and Technology, Qingdao, 266590, China 5.University of Chinese Academy of Sciences, Beijing 100049, China 6.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 7.Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China |
推荐引用方式 GB/T 7714 | Yang N,Zhou MC,Xia BJ,et al. Inversion Based on a Detached Dual-channel Domain Method for StyleGAN2 Embedding[J]. IEEE Signal Processing Letters,2021,28:553-557. |
APA | Yang N,Zhou MC,Xia BJ,Guo XW,&Qi L.(2021).Inversion Based on a Detached Dual-channel Domain Method for StyleGAN2 Embedding.IEEE Signal Processing Letters,28,553-557. |
MLA | Yang N,et al."Inversion Based on a Detached Dual-channel Domain Method for StyleGAN2 Embedding".IEEE Signal Processing Letters 28(2021):553-557. |
入库方式: OAI收割
来源:沈阳自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。