中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Inversion Based on a Detached Dual-channel Domain Method for StyleGAN2 Embedding

文献类型:期刊论文

作者Yang N(杨楠)1,5,6,7; Zhou MC(周孟初)2; Xia BJ(夏冰洁)1,5,6,7; Guo XW(郭希旺)2,3; Qi L(亓亮)4
刊名IEEE Signal Processing Letters
出版日期2021
卷号28页码:553-557
关键词Deep Learning Generative Adversarial Networks Image Reconstruction Latent Code Optimization
ISSN号1070-9908
产权排序1
英文摘要

A style-based generative adversarial network (Style- GAN2) yields remarkable results in image-to-latent embedding. This work proposes a Detached Dual-channel Domain Encoder as an effective and robust method to embed an image to a latent code, i.e., GAN inversion. It infers a latent code from two aspects: a) a detached dual-channel design to support faithful image reconstruction; and b) a local skip connection that allows conveying pieces of information with image details. We further introduce a hierarchical progressive training strategy that allows the proposed encoder to separately capture different semantic features. The qualitative and quantitative experimental results show that the well-trained encodercan embed an image into a latent code in StyleGAN2 latent space with less time than its peers while preserving facial identity and image details well.

资助项目National Natural Science Foundation of China[61773367] ; National Natural Science Foundation of China[61903358] ; National Natural Science Foundation of China[61903229] ; National Key Research and Development Program of China[2020YFB1313400]
WOS研究方向Engineering
语种英语
WOS记录号WOS:000633387100003
资助机构National Natural Science Foundation of China ; National Key Research and Development Program of China
源URL[http://ir.sia.cn/handle/173321/28501]  
专题沈阳自动化研究所_数字工厂研究室
通讯作者Zhou MC(周孟初)
作者单位1.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
2.Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982 USA
3.Computer and Communication Engineering College, Liaoning Shihua University, Fushun, 113001, China
4.College of Computer Science and Engineering at Shandong University of Science and Technology, Qingdao, 266590, China
5.University of Chinese Academy of Sciences, Beijing 100049, China
6.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
7.Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China
推荐引用方式
GB/T 7714
Yang N,Zhou MC,Xia BJ,et al. Inversion Based on a Detached Dual-channel Domain Method for StyleGAN2 Embedding[J]. IEEE Signal Processing Letters,2021,28:553-557.
APA Yang N,Zhou MC,Xia BJ,Guo XW,&Qi L.(2021).Inversion Based on a Detached Dual-channel Domain Method for StyleGAN2 Embedding.IEEE Signal Processing Letters,28,553-557.
MLA Yang N,et al."Inversion Based on a Detached Dual-channel Domain Method for StyleGAN2 Embedding".IEEE Signal Processing Letters 28(2021):553-557.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。