中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
一种基于贝叶斯的深潜器多变量融合及漏水检测方法

文献类型:专利

作者潘怡君; 郑泽宇; 付殿峥; 仝义明
发表日期2021-12-24
著作权人中国科学院沈阳自动化研究所
国家中国
文献子类发明
产权排序1
英文摘要本发明涉及一种基于贝叶斯的深潜器多变量融合及漏水检测方法,采集深潜器正常工作状态下的数据,根据稀疏表示方法对采集到的数据进行特征提取,利用两个范数构建目标函数,并将采集到的数据矩阵本身作为字典矩阵,求解凸优化函数得到一个稀疏系数矩阵,包含多个变量之间的重要关联信息;计算变量之间的相关关系,并利用得到的稀疏系数矩阵,以此实现待检测采样观测值的变量特征融合;基于融合后的数据,利用贝叶斯的无监督突变点检测方法,实现深潜器设备的漏水检测。本发明能够将多个变量的信息进行融合,并解决了数据标签困难的现状,有效提高了深潜器设备的漏水检测效果。
申请日期2020-06-24
语种中文
状态公开
源URL[http://ir.sia.cn/handle/173321/30149]  
专题沈阳自动化研究所_数字工厂研究室
作者单位中国科学院沈阳自动化研究所
推荐引用方式
GB/T 7714
潘怡君,郑泽宇,付殿峥,等. 一种基于贝叶斯的深潜器多变量融合及漏水检测方法. 2021-12-24.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。