RGB-D camera calibration and trajectory estimation for indoor mapping
文献类型:期刊论文
作者 | Yang L(杨亮)2,3![]() |
刊名 | Autonomous Robots
![]() |
出版日期 | 2020 |
卷号 | 44期号:8页码: 1485-1503 |
关键词 | RGB-D Computer vision 3D mapping Camera calibration |
ISSN号 | 0929-5593 |
产权排序 | 1 |
英文摘要 | In this paper, we present a system for estimating the trajectory of a moving RGB-D camera with applications to building maps of large indoor environments. Unlike the current most researches, we propose a ‘feature model’ based RGB-D visual odometry system for a computationally-constrained mobile platform, where the ‘feature model’ is persistent and dynamically updated from new observations using a Kalman filter. In this paper, we firstly propose a mixture of Gaussians model for the depth random noise estimation, which is used to describe the spatial uncertainty of the feature point cloud. Besides, we also introduce a general depth calibration method to remove systematic errors in the depth readings of the RGB-D camera. We provide comprehensive theoretical and experimental analysis to demonstrate that our model based iterative-closest-point (ICP) algorithm can achieve much higher localization accuracy compared to the conventional ICP. The visual odometry runs at frequencies of 30 Hz or higher, on VGA images, in a single thread on a desktop CPU with no GPU acceleration required. Finally, we examine the problem of place recognition from RGB-D images, in order to form a pose-graph SLAM approach to refining the trajectory and closing loops. We evaluate the effectiveness of the system on using publicly available datasets with ground-truth data. The entire system is available for free and open-source online. |
WOS关键词 | MODEL |
资助项目 | U.S. Army Research Office[W911NF-09-1-0565] ; U.S. National Science Foundation[IIS-0644127] ; U.S. National Science Foundation[CBET-1160046] ; Federal High-Way Administration (FHWA)[DTFH61-12-H-00002] ; PSC-CUNY[65789-00-43] |
WOS研究方向 | Computer Science ; Robotics |
语种 | 英语 |
WOS记录号 | WOS:000560274300001 |
资助机构 | U.S. Army Research Office [W911NF-09-1-0565] ; U.S. National Science FoundationNational Science Foundation (NSF) [IIS-0644127, CBET-1160046] ; Federal High-Way Administration (FHWA) [DTFH61-12-H-00002] ; PSC-CUNY [65789-00-43] |
源URL | [http://ir.sia.cn/handle/173321/27542] ![]() |
专题 | 工艺装备与智能机器人研究室 |
作者单位 | 1.Department of Computer Science, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States 2.The City College of New York, Convent Ave & 140th Street, New York, NY 10031, United States 3.Shenyang Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shenyang, China |
推荐引用方式 GB/T 7714 | Yang L,Dryanovski, Ivan,Valenti, Roberto G.,et al. RGB-D camera calibration and trajectory estimation for indoor mapping[J]. Autonomous Robots,2020,44(8): 1485-1503. |
APA | Yang L,Dryanovski, Ivan,Valenti, Roberto G.,&Wolberg, George.(2020).RGB-D camera calibration and trajectory estimation for indoor mapping.Autonomous Robots,44(8), 1485-1503. |
MLA | Yang L,et al."RGB-D camera calibration and trajectory estimation for indoor mapping".Autonomous Robots 44.8(2020): 1485-1503. |
入库方式: OAI收割
来源:沈阳自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。