Generalization on Unseen Domains via Model-Agnostic Learning for Intelligent Fault Diagnosis
文献类型:期刊论文
作者 | Wang, Huanjie2,3![]() ![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
![]() |
出版日期 | 2022 |
卷号 | 71页码:11 |
关键词 | Fault diagnosis Data models Task analysis Representation learning Adaptation models Training data Training Convolutional neural network (CNN) data-driven fault diagnosis domain generalization (DG) model-agnostic learning rolling bearing |
ISSN号 | 0018-9456 |
DOI | 10.1109/TIM.2022.3152316 |
通讯作者 | Tan, Jie(jie.tan@ia.ac.cn) |
英文摘要 | Machine learning-based diagnosis methods have achieved remarkable success under the assumption that the training and test data are identically distributed. However, a critical requirement of these methods is the generalization capability to unseen domains when deployed to actual diagnosis scenarios. We introduce the challenging problem of domain generalization, i.e., learning from multiple source domains to produce a model that can directly generalize to unseen domains without target information. We adopt a model-agnostic learning produce that maximizes the dot product of gradients between the source domains. Such a gradient alignment objective encourages finding a common optimization path for all source domains, which helps to focus on invariant representations. Furthermore, we propose two feature regularizations that explicitly regularize the feature space. Global feature regularization aligns class relationships between different domains to preserve the domain-invariant knowledge. Local feature regularization encourages the model to learn domain-agnostic class-specific representations with intraclass compactness and interclass separability. The effectiveness of the proposed method is demonstrated with generalization experiments on two benchmarks. |
WOS关键词 | NETWORK ; KERNEL |
资助项目 | National Key Research and Development Program of China[2018YFB1703401] ; National Nature Science Foundation of China[62003344] ; National Nature Science Foundation of China[U1801263] |
WOS研究方向 | Engineering ; Instruments & Instrumentation |
语种 | 英语 |
WOS记录号 | WOS:000766618900020 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Key Research and Development Program of China ; National Nature Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/48147] ![]() |
专题 | 综合信息系统研究中心_工业智能技术与系统 |
通讯作者 | Tan, Jie |
作者单位 | 1.Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110819, Peoples R China 2.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Huanjie,Bai, Xiwei,Wang, Sihan,et al. Generalization on Unseen Domains via Model-Agnostic Learning for Intelligent Fault Diagnosis[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2022,71:11. |
APA | Wang, Huanjie,Bai, Xiwei,Wang, Sihan,Tan, Jie,&Liu, Chengbao.(2022).Generalization on Unseen Domains via Model-Agnostic Learning for Intelligent Fault Diagnosis.IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,71,11. |
MLA | Wang, Huanjie,et al."Generalization on Unseen Domains via Model-Agnostic Learning for Intelligent Fault Diagnosis".IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 71(2022):11. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。