中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multi-instance learning of graph neural networks for aqueous pK(a) prediction

文献类型:期刊论文

作者Xiong, Jiacheng1,2; Li, Zhaojun3; Wang, Guangchao4; Fu, Zunyun1; Zhong, Feisheng1,2; Xu, Tingyang5; Liu, Xiaomeng1,2; Huang, Ziming1,2; Liu, Xiaohong1,3,6,7; Chen, Kaixian1,2
刊名BIOINFORMATICS
出版日期2022-02-01
卷号38期号:3页码:792-798
ISSN号1367-4803
DOI10.1093/bioinformatics/btab714
通讯作者Jiang, Hualiang(hljiang@simm.ac.cn) ; Zheng, Mingyue(myzheng@simm.ac.cn)
英文摘要Motivation: The acid dissociation constant (pK(a)) is a critical parameter to reflect the ionization ability of chemical compounds and is widely applied in a variety of industries. However, the experimental determination of pK(a) is intricate and time-consuming, especially for the exact determination of micro-pK(a) information at the atomic level. Hence, a fast and accurate prediction of pK(a) values of chemical compounds is of broad interest. Results: Here, we compiled a large-scale pK(a) dataset containing 16 595 compounds with 17 489 pK(a) values. Based on this dataset, a novel pK(a) prediction model, named Graph-pK(a), was established using graph neural networks. Graph-pK(a) performed well on the prediction of macro-pK(a) values, with a mean absolute error around 0.55 and a coefficient of determination around 0.92 on the test dataset. Furthermore, combining multi-instance learning, Graph-pK(a) was also able to automatically deconvolute the predicted macro-pK(a) into discrete micro-pK(a) values.
WOS关键词DRUGS
资助项目Shanghai Municipal Science and Technology Major Project ; National Natural Science Foundation of China[81773634] ; Tencent AI Lab Rhino-Bird Focused Research Program[JR202002]
WOS研究方向Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics
语种英语
WOS记录号WOS:000743386000024
出版者OXFORD UNIV PRESS
源URL[http://119.78.100.183/handle/2S10ELR8/300510]  
专题新药研究国家重点实验室
通讯作者Jiang, Hualiang; Zheng, Mingyue
作者单位1.Chinese Acad Sci, Drug Discovery & Design Ctr, Shanghai Inst Mat Med, State Key Lab Drug Res, Shanghai 201203, Peoples R China
2.Univ Chinese Acad Sci, Coll Pharm, Beijing 100049, Peoples R China
3.Suzhou Alphama Biotechnol Co Ltd, Dev Dept, Suzhou 215000, Peoples R China
4.Dezhou Univ, Coll Comp & Informat Engn, Dezhou City 253023, Peoples R China
5.Tencent, Tencent AI Lab, Shenzhen 518057, Peoples R China
6.ShanghaiTech Univ, Shanghai Inst Adv Immunochem Studies, Shanghai 200031, Peoples R China
7.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 200031, Peoples R China
推荐引用方式
GB/T 7714
Xiong, Jiacheng,Li, Zhaojun,Wang, Guangchao,et al. Multi-instance learning of graph neural networks for aqueous pK(a) prediction[J]. BIOINFORMATICS,2022,38(3):792-798.
APA Xiong, Jiacheng.,Li, Zhaojun.,Wang, Guangchao.,Fu, Zunyun.,Zhong, Feisheng.,...&Zheng, Mingyue.(2022).Multi-instance learning of graph neural networks for aqueous pK(a) prediction.BIOINFORMATICS,38(3),792-798.
MLA Xiong, Jiacheng,et al."Multi-instance learning of graph neural networks for aqueous pK(a) prediction".BIOINFORMATICS 38.3(2022):792-798.

入库方式: OAI收割

来源:上海药物研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。