Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data
文献类型:期刊论文
作者 | Liu, Jing5,6![]() ![]() ![]() ![]() ![]() ![]() |
刊名 | CELL REPORTS
![]() |
出版日期 | 2022-08-02 |
卷号 | 40期号:5页码:28 |
ISSN号 | 2211-1247 |
DOI | 10.1016/j.celrep.2022.111151 |
通讯作者 | Xie, Qiwei(qiwei.xie@bjut.edu.cn) ; Han, Hua(hua.han@ia.ac.cn) ; Yang, Yang(yangyang2@shanghaitech.edu.cn) |
英文摘要 | Serial section electron microscopy (ssEM) can provide comprehensive 3D ultrastructural information of the brain with exceptional computational cost. Targeted reconstruction of subcellular structures from ssEM da-tasets is less computationally demanding but still highly informative. We thus developed a region-CNN -based deep learning method to identify, segment, and reconstruct synapses and mitochondria to explore the structural plasticity of synapses and mitochondria in the auditory cortex of mice subjected to fear con-ditioning. Upon reconstructing over 135,000 mitochondria and 160,000 synapses, we find that fear condition-ing significantly increases the number of mitochondria but decreases their size and promotes formation of multi-contact synapses, comprising a single axonal bouton and multiple postsynaptic sites from different dendrites. Modeling indicates that such multi-contact configuration increases the information storage ca-pacity of new synapses by over 50%. With high accuracy and speed in reconstruction, our method yields structural and functional insight into cellular plasticity associated with fear learning. |
WOS关键词 | STRUCTURAL DETERMINANTS ; MULTIPLE SYNAPSES ; CEREBRAL CORTEX ; MOSSY FIBER ; LAYER 4 ; PLASTICITY ; EXPERIENCE ; MORPHOGENESIS ; SEGMENTATION ; TRANSMISSION |
资助项目 | National Science and Technology Innovation 2030 Major Program[2021ZD0204503] ; National Science and Technology Innovation 2030 Major Program[2021ZD0 204500] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDB32030208] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDA16021104] ; National Natural Science Foundation of China[32171461] ; National Natural Science Foundation of China[31970960] ; National Natural Science Foundation of China[61673381] ; Program of Beijing Municipal Science & Technology Commission[Z201100008420004] ; ShanghaiTech University |
WOS研究方向 | Cell Biology |
语种 | 英语 |
WOS记录号 | WOS:000843351100001 |
出版者 | CELL PRESS |
资助机构 | National Science and Technology Innovation 2030 Major Program ; Strategic Priority Research Program of Chinese Academy of Sciences ; National Natural Science Foundation of China ; Program of Beijing Municipal Science & Technology Commission ; ShanghaiTech University |
源URL | [http://ir.ia.ac.cn/handle/173211/49870] ![]() |
专题 | 类脑智能研究中心_微观重建与智能分析 |
通讯作者 | Xie, Qiwei; Han, Hua; Yang, Yang |
作者单位 | 1.Beijing Univ Technol, Res Base Beijing Modern Mfg Dev, Beijing 100124, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Inst Neurosci, Ctr Excellence Brain Sci & Intelligence Technol, State Key Lab Neurosci,Key Lab Primate Neurobiol, Shanghai 200031, Peoples R China 4.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China 5.Univ Chinese Acad Sci, Sch Artificial Intelligence, Sch Future Technol, Beijing 101408, Peoples R China 6.Chinese Acad Sci, Inst Automat, Res Ctr Brain inspired Intelligence, Lab Pattern Recognit, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Jing,Qi, Junqian,Chen, Xi,et al. Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data[J]. CELL REPORTS,2022,40(5):28. |
APA | Liu, Jing.,Qi, Junqian.,Chen, Xi.,Li, Zhenchen.,Hong, Bei.,...&Yang, Yang.(2022).Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data.CELL REPORTS,40(5),28. |
MLA | Liu, Jing,et al."Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data".CELL REPORTS 40.5(2022):28. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。