中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Category-Level 6D Object Pose Estimation With Structure Encoder and Reasoning Attention

文献类型:期刊论文

作者Liu, Jierui1,2; Cao, Zhiqiang1,2; Tang, Yingbo1,2; Liu, Xilong1,2; Tan, Min1,2
刊名IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
出版日期2022-10-01
卷号32期号:10页码:6728-6740
关键词Shape Three-dimensional displays Cognition Pose estimation Feature extraction Decoding Solid modeling Category-level 6D object pose estimation structure encoder reasoning attention
ISSN号1051-8215
DOI10.1109/TCSVT.2022.3169144
通讯作者Liu, Xilong(xilong.liu@ia.ac.cn)
英文摘要Category-level 6D object pose estimation has gained popularity and it is still challenging due to the diversity of different instances within the same category. In this paper, a novel category-level 6D object pose estimation framework with structure encoder and reasoning attention is proposed. A structure autoencoder is introduced to mine the shared structure features in the color images within the same category, via a distinct learning strategy that recovers the image of another instance but with the most similar pose to the input. On this basis, a reasoning attention decoder and full connected layers are stacked to form a rotation prediction network, where the structure features and 3D shape features are integrated and projected to a semantic space. The semantic space includes observed patterns and learnable patterns, which are better learned by adding a shortcut connection branch parallel to reasoning attention decoder with gradient decouple. Further reasoning based on these patterns endows the decoder with powerful feature representation. Without 3D object models, the proposed method models the attributes of category implicitly in the semantic space and better performance of 6D object pose estimation is guaranteed by reasoning on this space. The effectiveness of the proposed method is verified by the results on public datasets and actual experiments.
资助项目National Natural Science Foundation of China[62073322] ; National Natural Science Foundation of China[61836015]
WOS研究方向Engineering
语种英语
WOS记录号WOS:000864197600021
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China
源URL[http://ir.ia.ac.cn/handle/173211/50358]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_互联网大数据与安全信息学研究中心
自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队
精密感知与控制研究中心_精密感知与控制
通讯作者Liu, Xilong
作者单位1.Chinese Acad Sci, State Key Lab Management & Control Complex Syst, Inst Automat, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Liu, Jierui,Cao, Zhiqiang,Tang, Yingbo,et al. Category-Level 6D Object Pose Estimation With Structure Encoder and Reasoning Attention[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2022,32(10):6728-6740.
APA Liu, Jierui,Cao, Zhiqiang,Tang, Yingbo,Liu, Xilong,&Tan, Min.(2022).Category-Level 6D Object Pose Estimation With Structure Encoder and Reasoning Attention.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,32(10),6728-6740.
MLA Liu, Jierui,et al."Category-Level 6D Object Pose Estimation With Structure Encoder and Reasoning Attention".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 32.10(2022):6728-6740.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。