中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
MLCFNet: Multi-Level Context Fusion Network for 3D Object Tracking

文献类型:会议论文

作者Zhang,Yongchang; He,Wenhao
出版日期2022-05-01
会议日期2022-5-1
会议地点线上
英文摘要

Due to exhaustive proposal generations, conventional 3D object tracking methods based on template matching are time-consuming. Some recent works that leverage template clues to directly obtain 3D boxes are more efficient, but they don't take full advantage of the template context. In this work, we propose a novel Multi-Level Context Fusion Network (MLCFNet) to track objects robustly. Our main idea is to fuse template context in multiple levels (point, local, and global features) into the search area and utilize the joint information to predict the final box.  Specifically, a 3D Siamese Network firstly extracts multi-level features in the search area and template. Then, to promote the guidance of the template, a Context Fusion Network fuses these features into the search area and generates guided points. Finally, these points are used to regress potential object centers and cluster 3D object proposals. Experiments on KITTI and nuScenes tracking datasets demonstrate that MLCFNet outperforms other state-of-the-art methods by a large margin.

源URL[http://ir.ia.ac.cn/handle/173211/51701]  
专题精密感知与控制研究中心_精密感知与控制
通讯作者He,Wenhao
作者单位1.中国科学院大学
2.中国科学院自动化研究所
推荐引用方式
GB/T 7714
Zhang,Yongchang,He,Wenhao. MLCFNet: Multi-Level Context Fusion Network for 3D Object Tracking[C]. 见:. 线上. 2022-5-1.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。