中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Keypoint Localization Based on Convolutional Neural Network for Robotic Implantation of Flexible Micro-Electrodes

文献类型:会议论文

作者Liang, Wenliang; Qin, Fangbo; Han, Xinyong; Zhang, Dapeng
出版日期2022-08
会议日期2022年8月24日-2022年8月26日
会议地点墨西哥/成都
英文摘要

Visual localization of micro flexible electrode and implant needle is an important task for robotic flexible electrode implantation. Magnification switch, occlusion, defocus, illumination changes in microscopic imaging produce challenges for this task. We propose the Keypoint Localization and Angle Estimation Network (KLAE-Net) based on convolutional neural networks. KLAE-Net has two branches: the keypoint localization branch for obtaining the coordinates of electrode and needle in image space; the angle estimation branch for monitoring the inclination of needle. Attention mechanism and deformable convolution are used to improve the model’s performance. For training and evaluation under the flexible electrode implantation task, we construct a novel dataset containing 1000 images covering various conditions. An image Jacobian matrix based alignment control method is designed, to realize the robotic alignment between needle and electrode. A series of experiments are conducted with the dataset and an implantation robot system.

源URL[http://ir.ia.ac.cn/handle/173211/52221]  
专题精密感知与控制研究中心_精密感知与控制
通讯作者Zhang, Dapeng
作者单位Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Liang, Wenliang,Qin, Fangbo,Han, Xinyong,et al. Keypoint Localization Based on Convolutional Neural Network for Robotic Implantation of Flexible Micro-Electrodes[C]. 见:. 墨西哥/成都. 2022年8月24日-2022年8月26日.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。