Multi-Objective Bayesian Optimization using Deep Gaussian Processes with Applications to Copper Smelting Optimization
文献类型:会议论文
作者 | Kang, Liwen1,2![]() ![]() ![]() ![]() |
出版日期 | 2022-12 |
会议日期 | 2022-12 |
会议地点 | 新加坡 |
英文摘要 | Copper smelting is a complex industrial process that involves a lot of long procedures and inter-process connections. Moreover, there are non-stationary, noisy, and multi-objective challenges in copper smelting optimization. The traditional methods of process optimization rely on experience to adjust repeatedly, which is time-consuming and laborious, as well as difficult to find the optimal point. Bayesian optimization is an |
源URL | [http://ir.ia.ac.cn/handle/173211/52264] ![]() |
专题 | 综合信息系统研究中心_工业智能技术与系统 |
通讯作者 | Wang, Xuelei |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences 2.School of Artificial Intelligence, University of Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Kang, Liwen,Wang, Xuelei,Wu, Zhiheng,et al. Multi-Objective Bayesian Optimization using Deep Gaussian Processes with Applications to Copper Smelting Optimization[C]. 见:. 新加坡. 2022-12. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。