中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Position Control of an Underwater Biomimetic Vehicle-Manipulator System via Reinforcement Learning

文献类型:会议论文

作者Ma, Ruichen1,2; Wang, Yu1; Gao, Zisen4; Zhao, Tianzi4; Wang, Rui1; Wang, Shuo1,2; Zhou, Chao3
出版日期2020-11
会议日期20-22 November 2020
会议地点Liuzhou, China
DOI10.1109/DDCLS49620.2020.9275206
英文摘要

This paper addresses a position control method of an underwater biomimetic vehicle-manipulator system (UBVMS) through reinforcement learning. The system description of the UBVMS with undulating fins is given. Considering the force/torqu generated by undulating fins and hydrodynamic force/torqu, the dynamic model of this UBVMS is established. The position control problem is modeled into a continuous-state, continuous-action Markov decision process (MDP) with a deterministic state transition algorithm based on the dynamic model. To solve this MDP, a reinforcement learning method is presented, which is based on the deep deterministic policy gradient (DDPG) theorem. The simulations of the position control in 5 cases are shown in the end.

URL标识查看原文
源URL[http://ir.ia.ac.cn/handle/173211/52357]  
专题智能机器人系统研究
通讯作者Wang, Yu
作者单位1.State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Naval Research Academy, Beijing 100072, China
4.Beijing Institute of Petrochemical Technology, Beijing 102617, China
推荐引用方式
GB/T 7714
Ma, Ruichen,Wang, Yu,Gao, Zisen,et al. Position Control of an Underwater Biomimetic Vehicle-Manipulator System via Reinforcement Learning[C]. 见:. Liuzhou, China. 20-22 November 2020.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。