Data Generation Feedback Relearning Control for Unmodeled Nonlinear Systems
文献类型:期刊论文
作者 | Zhang, Yong2; Mu, Chaoxu2; Zhao, Dongbin1,3,4![]() |
刊名 | IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE
![]() |
出版日期 | 2023-09-04 |
页码 | 12 |
关键词 | Data models Real-time systems Heuristic algorithms Mathematical models Adaptation models Approximation algorithms Cost function Data generation model feedback relearning control delayed neural network reinforcement learning unmodeled nonlinear system |
ISSN号 | 2471-285X |
DOI | 10.1109/TETCI.2023.3301789 |
通讯作者 | Mu, Chaoxu(cxmu@tju.edu.cn) |
英文摘要 | Reinforcement learning (RL) algorithms require continuous interaction with the controlled plant to optimize the objective function and control policy. However, the security risk and poor real-time performance limit the application of RL algorithms. In this article, a data generation feedback relearning (DGFR) control algorithm is developed to avoid these limitations. The DGFR control algorithm improves the control performance by interacting with a proposed delayed neural network-based data generation model. Considering the time-delay characteristics of industrial production, the data generation model is different from the identifier of the system model, but it is used to generate the target data required by the DGFR control algorithm. The interaction between the algorithm and the data generation model avoids the risk of trial-and-error and improves real-time performance. Finally, the superiority of the proposed control algorithm is verified by giving comparative experiments in conjunction with a power grid system and a permanent magnet synchronous motor system. |
WOS关键词 | H-INFINITY CONTROL ; ZERO-SUM GAMES ; STABILITY ; ALGORITHM ; STATE |
资助项目 | National Key Research and Development Program of China[2021YFB1714700] ; National Natural Science Foundation of China[62022061] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:001064590300001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Key Research and Development Program of China ; National Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/53188] ![]() |
专题 | 多模态人工智能系统全国重点实验室 |
通讯作者 | Mu, Chaoxu |
作者单位 | 1.Peng Cheng Lab, Shenzhen 518055, Peoples R China 2.Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China 3.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China 4.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Yong,Mu, Chaoxu,Zhao, Dongbin. Data Generation Feedback Relearning Control for Unmodeled Nonlinear Systems[J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE,2023:12. |
APA | Zhang, Yong,Mu, Chaoxu,&Zhao, Dongbin.(2023).Data Generation Feedback Relearning Control for Unmodeled Nonlinear Systems.IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE,12. |
MLA | Zhang, Yong,et al."Data Generation Feedback Relearning Control for Unmodeled Nonlinear Systems".IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE (2023):12. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。