Class Incremental Robotic Pick-and-Place via Incremental Few-Shot Object Detection
文献类型:期刊论文
作者 | Deng JR(邓杰仁)1,2![]() ![]() ![]() ![]() ![]() |
刊名 | IEEE ROBOTICS AND AUTOMATION LETTERS
![]() |
出版日期 | 2023 |
卷号 | 8期号:9页码:5974-5981 |
文献子类 | 期刊论文 |
英文摘要 | We introduce a new task, called Class Incremental Robotic Pick-and-Place (CIRPAP), which calls for the capacity to learn to pick and place new categories of objects while retaining the skill of dealing with the previously learned ones. CIRPAP faces three challenges: catastrophic forgetting, few-shot learning, and robust picking in cluttered environments. To address the challenges of catastrophic forgetting and few-shot learning, we propose a novel CIRPAP framework that is built on Incremental Few-Shot Object Detection (iFSD). Specifically, with fixed pre-trained Transformerlike object detection models, we only fine-tune the additional adapter modules, which is called adapter-tuning. To address the challenge of robust picking in cluttered environments, we also utilize multiview fusion to integrate object detection and grasp prediction results. As for iFSD evaluation, experiments show that our adapter-tuning-based approach outperforms state-of-the-art methods on COCO and our dataset. As for full CIRPAP system evaluation, experimental results on a real robotic platform demonstrate the effectiveness of our proposed framework. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/57077] ![]() |
专题 | 智能制造技术与系统研究中心_先进制造与自动化 |
通讯作者 | Zhang HJ(张好剑) |
作者单位 | 1.中国科学院大学 2.中国科学院自动化研究所 |
推荐引用方式 GB/T 7714 | Deng JR,Zhang HJ,Hu JH,et al. Class Incremental Robotic Pick-and-Place via Incremental Few-Shot Object Detection[J]. IEEE ROBOTICS AND AUTOMATION LETTERS,2023,8(9):5974-5981. |
APA | Deng JR,Zhang HJ,Hu JH,Zhang XX,&Wang YK.(2023).Class Incremental Robotic Pick-and-Place via Incremental Few-Shot Object Detection.IEEE ROBOTICS AND AUTOMATION LETTERS,8(9),5974-5981. |
MLA | Deng JR,et al."Class Incremental Robotic Pick-and-Place via Incremental Few-Shot Object Detection".IEEE ROBOTICS AND AUTOMATION LETTERS 8.9(2023):5974-5981. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。