中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Class Incremental Robotic Pick-and-Place via Incremental Few-Shot Object Detection

文献类型:期刊论文

作者Deng JR(邓杰仁)1,2; Zhang HJ(张好剑)2; Hu JH(胡建华)2; Zhang XX(张兴轩)1,2; Wang YK(王云宽)2
刊名IEEE ROBOTICS AND AUTOMATION LETTERS
出版日期2023
卷号8期号:9页码:5974-5981
文献子类期刊论文
英文摘要

We introduce a new task, called Class Incremental Robotic Pick-and-Place (CIRPAP), which calls for the capacity to learn to pick and place new categories of objects while retaining the skill of dealing with the previously learned ones. CIRPAP faces three challenges: catastrophic forgetting, few-shot learning, and robust picking in cluttered environments. To address the challenges of catastrophic forgetting and few-shot learning, we propose a novel CIRPAP framework that is built on Incremental Few-Shot Object Detection (iFSD). Specifically, with fixed pre-trained Transformerlike object detection models, we only fine-tune the additional adapter modules, which is called adapter-tuning. To address the challenge of robust picking in cluttered environments, we also utilize multiview fusion to integrate object detection and grasp prediction results. As for iFSD evaluation, experiments show that our adapter-tuning-based approach outperforms state-of-the-art methods on COCO and our dataset. As for full CIRPAP system evaluation, experimental results on a real robotic platform demonstrate the effectiveness of our proposed framework.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/57077]  
专题智能制造技术与系统研究中心_先进制造与自动化
通讯作者Zhang HJ(张好剑)
作者单位1.中国科学院大学
2.中国科学院自动化研究所
推荐引用方式
GB/T 7714
Deng JR,Zhang HJ,Hu JH,et al. Class Incremental Robotic Pick-and-Place via Incremental Few-Shot Object Detection[J]. IEEE ROBOTICS AND AUTOMATION LETTERS,2023,8(9):5974-5981.
APA Deng JR,Zhang HJ,Hu JH,Zhang XX,&Wang YK.(2023).Class Incremental Robotic Pick-and-Place via Incremental Few-Shot Object Detection.IEEE ROBOTICS AND AUTOMATION LETTERS,8(9),5974-5981.
MLA Deng JR,et al."Class Incremental Robotic Pick-and-Place via Incremental Few-Shot Object Detection".IEEE ROBOTICS AND AUTOMATION LETTERS 8.9(2023):5974-5981.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。