Online Instance Segmentation and Reconstruction of Ultrasound Vascular Videos
文献类型:会议论文
作者 | Chen JA(陈玖安)1,3![]() ![]() ![]() |
出版日期 | 2024-11 |
会议日期 | 2024-6 |
会议地点 | 荷兰 埃因霍温 |
英文摘要 | The application of ultrasound in interventional surgery faces many challenges due to its lack of clarity. While existing algorithms can process single-frame ultrasound images efficiently, they still suffer from poor accuracy and discontinuous detection. In this paper, we propose an online instance segmentation network for ultrasound-guided interventional surgery Videos. When detecting the current frame, the fusion of previous frames enhances the accuracy and continuity of the segmentation. Meanwhile, real-time 3D reconstruction of vessels and interventional instruments is also achieved through the collaboration of robotic arms. Furthermore, we construct a novel dataset for vascular interventions. It accurately labels vessels and interventional instruments in 112 ultrasound videos, making it suitable for tasks related to the detection and segmentation of vascular ultrasound images. Experiments demonstrate that the proposed network improves detection accuracy by 11.0% mAP75 compared to the state-of-the-art method. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/57244] ![]() |
专题 | 智能微创医疗技术团队 |
通讯作者 | Liu HB(刘宏斌) |
作者单位 | 1.中国科学院大学人工智能学院 2.香港城市大学生物医学工程学系 3.中国科学院自动化研究所多模态人工智能系统全国重点实验室 4.School of Biomedical Engineering and Imaging Sciences, King's College London 5.中国科学院香港创新研究院人工智能与机器人创新中心 6.海军军医大学第二附属医院血管外科 |
推荐引用方式 GB/T 7714 | Chen JA,Chen MC,Zou SL,et al. Online Instance Segmentation and Reconstruction of Ultrasound Vascular Videos[C]. 见:. 荷兰 埃因霍温. 2024-6. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。