Stable Robotic Grasping with Center-Guided Grasp Pose Estimation
文献类型:会议论文
作者 | Deng JR(邓杰仁)1,2![]() ![]() ![]() ![]() |
出版日期 | 2023 |
会议日期 | 2023-12-22 |
会议地点 | 中国长沙 |
英文摘要 | Robotic grasp pose estimation in unstructured environments remains a critical challenge in the field of robotics. Existing methods, like GraspNet, while effective, often overlook pivotal aspects such as an object’s weight distribution and inherent frictional forces. This oversight can lead to unstable grasping, especially evident when handling delicate items. To address this, this paper introduces a novel approach: center-guided grasp pose estimation. By leveraging deep learning techniques, the proposed method predicts an object’s center even in scenarios where point clouds from a single viewpoint are incomplete. This methodology prioritizes the object’s center, promoting more stable and precise grasps. Preliminary results indicate a marked improvement in grasp quality, underscoring the potential for safer and more effective robotic interactions in complex environments. |
源URL | [http://ir.ia.ac.cn/handle/173211/57376] ![]() |
专题 | 智能制造技术与系统研究中心_先进制造与自动化 |
通讯作者 | Wang YK(王云宽) |
作者单位 | 1.中国科学院大学 2.中国科学院自动化研究所 |
推荐引用方式 GB/T 7714 | Deng JR,Hu JH,Zhang HJ,et al. Stable Robotic Grasping with Center-Guided Grasp Pose Estimation[C]. 见:. 中国长沙. 2023-12-22. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。