A Multi-Task Learning Approach for Stereo Depth Estimation
文献类型:会议论文
作者 | Jin C(金晨)2,4![]() ![]() ![]() |
出版日期 | 2024 |
会议日期 | 2024年5月25日-5月27日 |
会议地点 | 西安 |
英文摘要 | Due to the uneven depth scale in the linear disparity space, calculating stereo disparity and subsequently converting it into depth, although widely used, leads to nonlinear error amplification. Moreover, the limited availability of depth annotations in stereo datasets has impeded the progress of end-to-end depth estimation techniques. This paper introduces a semi-supervised method for depth estimation using a multi-task network. The multi-task network comprises two branches for disparity estimation and depth estimation. During training, it leverages a pre-trained stereo disparity network to provide dense depth self-supervision, expediting the training of the depth branch. This network offers an effective solution to the scarcity of stereo depth datasets and the sparsity of depth information in point cloud annotations. The efficacy of the algorithm is validated on the KITTI 3D object dataset using sparse point clouds as depth annotations, showcasing remarkable depth estimation capabilities. Additionally, the paper transforms obtained depth maps into pseudo-lidar for 3D object detection, achieving promising results on the KITTI dataset. |
会议录出版者 | IEEE |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/57494] ![]() |
专题 | 精密感知与控制研究中心_精密感知与控制 |
通讯作者 | Yang GD(杨国栋) |
作者单位 | 1.中国铁道科学研究院 2.中国科学院工业视觉智能装备技术工程实验室,中国科学院自动化研究所 3.北京交通大学 4.中国科学院大学人工智能学院 |
推荐引用方式 GB/T 7714 | Jin C,Luan DJ,Lei Z,et al. A Multi-Task Learning Approach for Stereo Depth Estimation[C]. 见:. 西安. 2024年5月25日-5月27日. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。