A Bio-Inspired Integration Model of Basal Ganglia and Cerebellum for Motion Learning of a Musculoskeletal Robot
文献类型:期刊论文
作者 | Zhang, Jinhan1,2; Chen, Jiahao1,2![]() ![]() ![]() |
刊名 | JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY
![]() |
出版日期 | 2024-02-01 |
卷号 | 37期号:1页码:82-113 |
关键词 | Basal ganglia and cerebellum bio-inspired integration model motion learning muscu-loskeletal robot reinforcement learning |
ISSN号 | 1009-6124 |
DOI | 10.1007/s11424-024-3414-7 |
通讯作者 | Qiao, Hong(hong.qiao@ia.ac.cn) |
英文摘要 | It is a significant research direction for highly complex musculoskeletal robots that how to develop the ability of motion learning and generalization. The cooperations of multiple brain regions are crucial to improving motion performance. Inspired by the neural mechanisms of structures, functions, and interconnections of basal ganglia and cerebellum, a biologically inspired integration model for motor learning of musculoskeletal robots is proposed. Based on the neural characteristics of the basal ganglia, the basal ganglia actor network, which mainly simulates the dorsal striatum, outputs motion commands, and the basal ganglia critic network, which simulates the ventral striatum, estimates action-state values. Their network parameters are updated using the soft actor-critic method. Based on the sensorimotor prediction mechanism of the cerebellum, the cerebellum network evaluates the state feature extraction quality of the basal ganglia actor network and then updates the weights of its feature layer. This learning method is proven to converge to the optimal policy. Furthermore, drawing on the mechanism of dopaminergic dynamic regulation in the basal ganglia, the adaptive adjustment of target entropy and the dopaminergic experience replay are proposed to further improve the integration model, which contributes to the exploration-exploitation trade-off of motor learning. The bio-inspired integration model is validated on a musculoskeletal system. Experimental results indicate that this model can effectively control the musculoskeletal robot to accomplish the motion task from random starting locations to random target positions with high precision and robustness. |
WOS关键词 | ENCODE ; MODULATION ; SIMULATION ; ATTITUDE ; UAV |
资助项目 | Major Project of Science and Technology Innovation 2030 Brain Science and Brain-Inspired Intelligence[2021ZD0200408] ; National Natural Science Foundation of China[62203439] ; National Natural Science Foundation of China[62203443] ; Major program of the National Natural Science Foundation of China[T2293720] ; Major program of the National Natural Science Foundation of China[T2293723] ; Major program of the National Natural Science Foundation of China[T2293724] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:001173126600007 |
出版者 | SPRINGER HEIDELBERG |
资助机构 | Major Project of Science and Technology Innovation 2030 Brain Science and Brain-Inspired Intelligence ; National Natural Science Foundation of China ; Major program of the National Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/57969] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组 |
通讯作者 | Qiao, Hong |
作者单位 | 1.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Jinhan,Chen, Jiahao,Zhong, Shanlin,et al. A Bio-Inspired Integration Model of Basal Ganglia and Cerebellum for Motion Learning of a Musculoskeletal Robot[J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,2024,37(1):82-113. |
APA | Zhang, Jinhan,Chen, Jiahao,Zhong, Shanlin,&Qiao, Hong.(2024).A Bio-Inspired Integration Model of Basal Ganglia and Cerebellum for Motion Learning of a Musculoskeletal Robot.JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,37(1),82-113. |
MLA | Zhang, Jinhan,et al."A Bio-Inspired Integration Model of Basal Ganglia and Cerebellum for Motion Learning of a Musculoskeletal Robot".JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY 37.1(2024):82-113. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。