中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
WATCHER: Wavelet-Guided Texture-Content Hierarchical Relation Learning for Deepfake Detection

文献类型:期刊论文

作者Wang, Yuan1,2,3; Chen, Chen4; Zhang, Ning5; Hu, Xiyuan6
刊名INTERNATIONAL JOURNAL OF COMPUTER VISION
出版日期2024-05-23
页码22
关键词Face forgery detection Texture features Attention maps learning Relation-aware feature fusion
ISSN号0920-5691
DOI10.1007/s11263-024-02116-5
通讯作者Hu, Xiyuan(huxiyuan@bjut.edu.cn)
英文摘要Breathtaking advances in face forgery techniques produce visually untraceable deepfake videos, thus potential malicious abuse of these techniques has sparked great concerns. Existing deepfake detectors primarily focus on specific forgery patterns with global features extracted by CNN backbones for forgery detection. Due to inadequate exploration of content and texture features, they often suffer from overfitting method-specific forged regions, thus exhibiting limited generalization to increasingly realistic forgeries. In this paper, we propose a Wavelet-guided Texture-Content HiErarchical Relation (WATCHER) Learning framework to delve deeper into the relation-aware texture-content features. Specifically, we propose a Wavelet-guided AutoEncoder scheme to retrieve the general visual representation, which is aware of high-frequency details for understanding forgeries. To further excavate fine-grained counterfeit clues, a Texture-Content Attention Maps Learning module is presented to enrich the contextual information of content and texture features via multi-level attention maps in a hierarchical learning protocol. Finally, we propose a Progressive Multi-domain Feature Interaction module in pursuit to perform semantic reasoning on relationship-enhanced texture-content forgery features. Extensive experiments on popular benchmark datasets substantiate the superiority of our WATCHER model, consistently trumping state-of-the-art methods by a significant margin.
WOS关键词IMAGE DECOMPOSITION ; SCALE
资助项目Key Technologies Research and Development Program[2021YFF0602101] ; National Key R &D Program of China[62172227] ; National Natural Science Foundation of China
WOS研究方向Computer Science
语种英语
WOS记录号WOS:001230131200003
出版者SPRINGER
资助机构Key Technologies Research and Development Program ; National Key R &D Program of China ; National Natural Science Foundation of China
源URL[http://ir.ia.ac.cn/handle/173211/58436]  
专题多模态人工智能系统全国重点实验室_医疗机器人
通讯作者Hu, Xiyuan
作者单位1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
2.Tsinghua Univ, Dept Elect Engn, Beijing 100083, Peoples R China
3.Beijing Natl Res Ctr Informat Sci & Technol BNRist, Beijing 100084, Peoples R China
4.Chinese Acad Sci, Inst Automation, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
5.Minist Publ Secur, Inst Forens Sci, Beijing, Peoples R China
6.Beijing Univ Technol, Faulty Informat Technol, Beijing 100124, Peoples R China
推荐引用方式
GB/T 7714
Wang, Yuan,Chen, Chen,Zhang, Ning,et al. WATCHER: Wavelet-Guided Texture-Content Hierarchical Relation Learning for Deepfake Detection[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2024:22.
APA Wang, Yuan,Chen, Chen,Zhang, Ning,&Hu, Xiyuan.(2024).WATCHER: Wavelet-Guided Texture-Content Hierarchical Relation Learning for Deepfake Detection.INTERNATIONAL JOURNAL OF COMPUTER VISION,22.
MLA Wang, Yuan,et al."WATCHER: Wavelet-Guided Texture-Content Hierarchical Relation Learning for Deepfake Detection".INTERNATIONAL JOURNAL OF COMPUTER VISION (2024):22.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。