Enlarge the Error Prediction Dataset in 3-D Printing: An Unsupervised Dental Crown Mesh Generator
文献类型:期刊论文
作者 | Zhao, Meihua1,2![]() ![]() ![]() ![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS
![]() |
出版日期 | 2024-07-18 |
页码 | 12 |
关键词 | Shape Generative adversarial networks Printing Point cloud compression Dentistry Task analysis Deformation 3-D printing depth image refinement (DR) displacement map (DM) generative adversarial network (GAN) mesh refinement |
ISSN号 | 2329-924X |
DOI | 10.1109/TCSS.2024.3417388 |
通讯作者 | Shen, Zhen(zhen.shen@ia.ac.cn) |
英文摘要 | The quality of the dataset is critical to the performance of neural networks for error prediction in 3-D printing. In order to enlarge the dataset, we propose a customized two-stage framework, cascaded cross-modality generative adversarial networks (CCMGANs), for generating dental crown meshes in an unsupervised manner. At the first stage, a displacement map-guided generative adversarial network (GAN) is used to generate coarse meshes with diverse shapes. At the second stage, fine-grained details are added to the coarse meshes using an image-based GAN. Unlike previous work that integrates a differentiable renderer into the mesh deformation process directly, we adopt a two-step strategy. First, we use a depth image refinement module to achieve the domain transformation from the rendered depth images of the generated meshes to those of the real ones. Then, we propose a mesh refinement module to optimize the coarse meshes in an image-supervised manner. To alleviate the self-intersection problem, we propose a loss to penalize the distances of point pairs in self-intersection regions. Experimental results show that our method is able to generate highly realistic meshes and outperforms the state-of-the-art point cloud generation method TreeGCN in terms of the metrics FDD, MMD-CD, MMD-EMD, and COV-EMD. Furthermore, we utilize the generated data to augment the original dataset, and demonstrate that the generated data can effectively improve the accuracy of the error prediction task in 3-D printing. |
WOS关键词 | DESIGN |
资助项目 | National Key Research and Development Program of China[2021YFB3301504] ; National Natural Science Foundation of China[92267103] ; National Natural Science Foundation of China[92360307] ; Guangdong Basic and Applied Basic Research Foundation[2021B1515140034] ; Beijing Natural Science Foundation[L233005] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:001273034900001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Key Research and Development Program of China ; National Natural Science Foundation of China ; Guangdong Basic and Applied Basic Research Foundation ; Beijing Natural Science Foundation |
源URL | [http://ir.ia.ac.cn/handle/173211/59330] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队 |
通讯作者 | Shen, Zhen |
作者单位 | 1.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Inst Automat, Beijing Engn Res Ctr Intelligent Syst & Technol, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China 4.Chinese Acad Sci, Cloud Comp Ctr, Guangdong Engn Res Ctr 3-D Printing & Intelligent, Dongguan 523808, Peoples R China 5.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Zhao, Meihua,Xiong, Gang,Fang, Qihang,et al. Enlarge the Error Prediction Dataset in 3-D Printing: An Unsupervised Dental Crown Mesh Generator[J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS,2024:12. |
APA | Zhao, Meihua.,Xiong, Gang.,Fang, Qihang.,Dong, Xisong.,Wang, Fang.,...&Wang, Fei-Yue.(2024).Enlarge the Error Prediction Dataset in 3-D Printing: An Unsupervised Dental Crown Mesh Generator.IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS,12. |
MLA | Zhao, Meihua,et al."Enlarge the Error Prediction Dataset in 3-D Printing: An Unsupervised Dental Crown Mesh Generator".IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS (2024):12. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。