中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Ultra-highly conductive optoelectronic modulated single-molecule nickel bis(dithiolene) junctions with strong molecule-electrode coupling

文献类型:期刊论文

作者Chen, Yiming1; Wang, Xinwei3; Wang, Xijuan1; Zhang, Xinhuan1; Chen, Chuanxiang1; Yuan, Saisai1; Duan, Ping2; Li, Jin3
刊名JOURNAL OF COLLOID AND INTERFACE SCIENCE
出版日期2025-02-15
卷号680页码:96-104
关键词Nickel bis(dithiolene) Molecule-electrode coupling Single-molecule conductance Break-junction Photoconductance Molecular switch
ISSN号0021-9797
DOI10.1016/j.jcis.2024.11.085
通讯作者Yuan, Saisai(yuansaisai@just.edu.cn) ; Duan, Ping(duanping@nankai.edu.cn) ; Li, Jin(jinli@yic.ac.cn)
英文摘要Strong molecule-electrode coupling originating from orbit hybridization between gold and the delocalized molecular wires in single-molecule junctions facilitates facile transport towards smart molecular devices. In this paper, we report ultra-highly conductive single-molecule circuits based on highly delocalized nickel bis (dithiolene) (NiS4) molecular junctions using scanning tunneling microscope break junction technique. Single- molecule charge transport measurement of both NiS4 reveals they exhibits high conductance of 10- 1.49 G 0 and 10-1.51 G 0 , respectively. Moreover, under intervention of high bias voltage the molecular conductance could be further improved to approximately 10- 1.00 G 0 , the highest value reported to date with similar molecular lengths. Theoretical calculations suggest that the strong hybridization of the it-channels and the gold electrodes in both junctions exists and it further extends from molecule-electrode interfaces to metal electrodes as visualized by the isosurface plots of the transmitting eigenstate, which lead to not only a distinct energy shift of the dominated LUMO peaks toward Fermi level, but also broad peaks in the LUMO resonance in the transmission functions. In addition, the both molecular junctions show remarkable photoconductance of approximately 10- 1.00 G 0 under resonant light excitation, due to possible exciton binding in these junctions. Interestingly, the conductance switching of both molecular junctions under optoelectronic modulation is highly reversible, forming a multi-stimulus responsive molecular switch. This work not only provides a building block for fabri- cating highly conducting molecular wires with strong molecule-electrode coupling, but also lays a foundation for designing optoelectronic modulated functional molecule-scale devices.
WOS关键词TRANSPORT
WOS研究方向Chemistry
语种英语
WOS记录号WOS:001360052700001
资助机构National Natural Science Foundation of China ; China Postdoctoral Science Foun-dation ; Industry-University-Research Collaboration Project of Jiangsu Province
源URL[http://ir.yic.ac.cn/handle/133337/38201]  
专题烟台海岸带研究所_中科院海岸带环境过程与生态修复重点实验室
烟台海岸带研究所_山东省海岸带环境工程技术研究中心
通讯作者Yuan, Saisai; Duan, Ping; Li, Jin
作者单位1.Jiangsu Univ Sci & Technol, Sch Environm & Chem Engn, Zhenjiang 212100, Peoples R China
2.Nankai Univ, Ctr Single Mol Sci, Frontiers Sci Ctr New Organ Matter, Inst Modern Opt,Coll Elect Informat & Opt Engn, Tianjin 300350, Peoples R China
3.Chinese Acad Sci, Yantai Inst Coastal Zone Res, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Peoples R China
推荐引用方式
GB/T 7714
Chen, Yiming,Wang, Xinwei,Wang, Xijuan,et al. Ultra-highly conductive optoelectronic modulated single-molecule nickel bis(dithiolene) junctions with strong molecule-electrode coupling[J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE,2025,680:96-104.
APA Chen, Yiming.,Wang, Xinwei.,Wang, Xijuan.,Zhang, Xinhuan.,Chen, Chuanxiang.,...&Li, Jin.(2025).Ultra-highly conductive optoelectronic modulated single-molecule nickel bis(dithiolene) junctions with strong molecule-electrode coupling.JOURNAL OF COLLOID AND INTERFACE SCIENCE,680,96-104.
MLA Chen, Yiming,et al."Ultra-highly conductive optoelectronic modulated single-molecule nickel bis(dithiolene) junctions with strong molecule-electrode coupling".JOURNAL OF COLLOID AND INTERFACE SCIENCE 680(2025):96-104.

入库方式: OAI收割

来源:烟台海岸带研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。