中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A GSD-driven approach to deriving stochastic soil strength parameters under hybrid machine learning models

文献类型:期刊论文

作者Jiang, Hu3,4; Li, Yong4; Zou, Qiang2,4; Zhang, Jun1,4; Cui, Junfang4; Cheng, Jianyi3,4; Zhou, Bin3,4; Chen, Siyu4; Zhou, Wentao3,4; Yao, Hongkun3,4
刊名EUROPEAN JOURNAL OF SOIL SCIENCE
出版日期2024
卷号75期号:6页码:18
关键词grain-size distribution Hengduan mountain hybrid machine learning models regional physical modelling stochastic soil strength parameters
ISSN号1351-0754
DOI10.1111/ejss.70009
英文摘要

The quantification of soil strength parameters is a crucial prerequisite for constructing physical models related to hydro-geophysical processes. However, due to ignoring soil spatial variability at different scales, traditional parameter assignment strategies, such as assigning values depending on land use classification or other classification systems, as well as those extrapolation and interpolation methods, are insufficient for physical process modelling. This work addressed this deficiency by proposing a method to derive stochastic soil strength parameters under hybrid machine learning (ML) models, taking into account the grain-size distribution (GSD) of soil with scaling invariance. The nonlinear connection between GSD parameters (derived from GSD curves, such as mu and Dc), moisture content, and soil shear strength parameters was fitted by the suggested hybrid ML model. An analysis of a case study revealed that: (i) the Multi-layer Perceptron optimized by the African Vulture Optimization Algorithm (AVOA) algorithm performs the best and can estimate the shear strength parameters of soil mass on vegetated slopes; (ii) all the selected ML models showed significant improvements in predictive performance after optimization with the AVOA, with R2 scores increasing by 24.72% for Support Vector Regressor, 34.04% for eXtreme Gradient Boosting, and 35.53% for Multi-layer Perceptron; and (iii) soil cohesion has an increasing relationship with the GSD parameter mu, while soil internal friction angle has a negative correlation with the grain-size parameter Dc. The proposed methodology can give predictions of soil shear strength distribution parameters, providing parameter support for the physical modelling of surface process dynamics.

WOS关键词PARTICLE-SIZE DISTRIBUTION ; SPATIAL VARIABILITY ; STABILITY
资助项目National Natural Science Foundation of China
WOS研究方向Agriculture
语种英语
WOS记录号WOS:001368789100001
出版者WILEY
资助机构National Natural Science Foundation of China
源URL[http://ir.imde.ac.cn/handle/131551/58591]  
专题中国科学院水利部成都山地灾害与环境研究所
通讯作者Zou, Qiang
作者单位1.Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing, Peoples R China
2.China Pakistan Joint Res Ctr Earth Sci CAS HEC, Islamabad, Pakistan
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.Chinese Acad Sci, Inst Mt Hazards & Environm IMHE, Key Lab Mt Hazards & Earth Surface Proc, Chengdu, Peoples R China
推荐引用方式
GB/T 7714
Jiang, Hu,Li, Yong,Zou, Qiang,et al. A GSD-driven approach to deriving stochastic soil strength parameters under hybrid machine learning models[J]. EUROPEAN JOURNAL OF SOIL SCIENCE,2024,75(6):18.
APA Jiang, Hu.,Li, Yong.,Zou, Qiang.,Zhang, Jun.,Cui, Junfang.,...&Yao, Hongkun.(2024).A GSD-driven approach to deriving stochastic soil strength parameters under hybrid machine learning models.EUROPEAN JOURNAL OF SOIL SCIENCE,75(6),18.
MLA Jiang, Hu,et al."A GSD-driven approach to deriving stochastic soil strength parameters under hybrid machine learning models".EUROPEAN JOURNAL OF SOIL SCIENCE 75.6(2024):18.

入库方式: OAI收割

来源:成都山地灾害与环境研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。