基于BSN和神经网络的人体日常动作识别方法
文献类型:期刊论文
作者 | 陈野 ; 王哲龙 ; 李政霖 ; 李宏伟 |
刊名 | 大连理工大学学报
![]() |
出版日期 | 2013 |
卷号 | 53期号:6页码:893-897 |
关键词 | 人体传感器网络 特征提取 神经网络 动作识别 |
ISSN号 | 1000-8608 |
其他题名 | Human daily activity recognition method based on BSN and neural network |
产权排序 | 2 |
中文摘要 | 基于人体传感器网络(BSN)对人体动作的识别,在远程医疗服务中具有重要应用。搭建了一个基于BSN的人体动作监测平台,实验中通过固定在人体腰部和大腿上的两个加速度传感器节点,来采集人体日常生活中的7个动作所产生的加速度信号,特征提取包含传感器节点在3个轴上信号的时域和频域信息,并采用神经网络和分层的方法融合信息对7个动作进行分类和识别。实验结果表明,应用所搭建的BSN平台和识别方法,采用两个传感器节点识别人体日常生活中的7个动作具有很高的正确率。 |
英文摘要 | Human activity recognition based on body sensor networks (BSN) has broad application in remote medical service. A monitoring platform based on BSN is established, and acceleration signals of 7human activities are collected from two sensor nodes mounted on the waist and the thigh of the user. The extractions of features include time domain and frequency domain information of tri-axis accelerometer and then 7human daily activities are classified by using neural network and hierarchical method. The experimental results show that the established monitoring platform and proposed recognition method can achieve satisfactory performance for 7human daily activity recognition |
收录类别 | CSCD |
资助信息 | “八六三”国家高技术研究发展计划资助项目(2012AA04150502);国家自然科学基金资助项目(61174027);辽宁省高等学校杰出青年学者成长计划资助项目(LJQ2012005) |
语种 | 中文 |
CSCD记录号 | CSCD:5002712 |
公开日期 | 2013-12-27 |
源URL | [http://ir.sia.ac.cn/handle/173321/14033] ![]() |
专题 | 沈阳自动化研究所_机器人学研究室 |
推荐引用方式 GB/T 7714 | 陈野,王哲龙,李政霖,等. 基于BSN和神经网络的人体日常动作识别方法[J]. 大连理工大学学报,2013,53(6):893-897. |
APA | 陈野,王哲龙,李政霖,&李宏伟.(2013).基于BSN和神经网络的人体日常动作识别方法.大连理工大学学报,53(6),893-897. |
MLA | 陈野,et al."基于BSN和神经网络的人体日常动作识别方法".大连理工大学学报 53.6(2013):893-897. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。