中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
PCA and SVM Based on Multiple Kernels for Breast Cancer Classification

文献类型:会议论文

作者Yang XF(杨秀锋); Peng H(彭慧); Zhou XF(周晓锋); Zhang YL(章永来)
出版日期2013
会议名称International Conference on Computer Science and Artificial Intelligence (ICCSAI)
会议日期NOV 16-17, 2013
会议地点Chengdu
关键词breast cancer Principal Component Analysis (PCA) Support Vector Machines (SVM) multiple kernels
页码136-140
中文摘要In this paper, we propose an efficient algorithm based on Principal Component Analysis (PCA) and Support Vector Machines(SVM) with multiple kernels in the process of breast cancer classification. The first step, we use PCA to project high dimensional breast cancer data into much lower dimensional space. Second, we use SVM with multiple kernels to classify the lower dimensional breast cancer data. Finally, the experimental and analytical results show that the proposed algorithm has a better performance than traditional SVM for breast cancer classification.
收录类别CPCI(ISTP)
产权排序1
会议录2013 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (ICCSAI 2013)
会议录出版者DESTECH PUBLICATIONS, INC
会议录出版地LANCASTER, PA
语种英语
ISBN号978-1-60595-132-4
WOS记录号WOS:000330026100031
源URL[http://ir.sia.cn/handle/173321/14561]  
专题沈阳自动化研究所_数字工厂研究室
推荐引用方式
GB/T 7714
Yang XF,Peng H,Zhou XF,et al. PCA and SVM Based on Multiple Kernels for Breast Cancer Classification[C]. 见:International Conference on Computer Science and Artificial Intelligence (ICCSAI). Chengdu. NOV 16-17, 2013.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。