Visual target tracking via weighted non-sparse representation and online metric learning
文献类型:会议论文
作者 | Duan, Jingdi; Fan BJ(范保杰)![]() ![]() |
出版日期 | 2013 |
会议名称 | 2013 IEEE International Conference on Robotics and Biomimetics, ROBIO 2013 |
会议日期 | December 12-14, 2013 |
会议地点 | Shenzhen, China |
关键词 | Biomimetics Graphic methods Robotics Target tracking |
页码 | 2691-2695 |
通讯作者 | Duan, Jingdi |
中文摘要 | In this paper, we propose online metric learning tracking method that consider visual tracking as a similarity measurement problem, and incorporates adaptive metric learning and generative histogram model based on non-sparse linear representation into the target tracking framework. We propose a generative histogram model based on non-sparse linear representation, which make full use of the non-sparse coefficients to discriminate between the target and the background. The similarity metric is adaptively learned online to maximize the margin of the distance between the foreground target and background. A bi-linear graph is defined accordingly to propagate the label of each sample. The model can also self-update using the more confident new samples. Numerous experiments on various challenging videos demonstrate that the proposed tracker performs favorably against several state-of-the-art algorithms. © 2013 IEEE. |
收录类别 | EI ; CPCI(ISTP) |
产权排序 | 3 |
会议录 | 2013 IEEE International Conference on Robotics and Biomimetics, ROBIO 2013
![]() |
会议录出版者 | IEEE |
会议录出版地 | New York |
语种 | 英语 |
ISBN号 | 978-1-4799-2744-9 |
WOS记录号 | WOS:000352739000449 |
源URL | [http://ir.sia.cn/handle/173321/14771] ![]() |
专题 | 沈阳自动化研究所_机器人学研究室 |
推荐引用方式 GB/T 7714 | Duan, Jingdi,Fan BJ,Cong Y. Visual target tracking via weighted non-sparse representation and online metric learning[C]. 见:2013 IEEE International Conference on Robotics and Biomimetics, ROBIO 2013. Shenzhen, China. December 12-14, 2013. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。