中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Visual target tracking via weighted non-sparse representation and online metric learning

文献类型:会议论文

作者Duan, Jingdi; Fan BJ(范保杰); Cong Y(丛杨)
出版日期2013
会议名称2013 IEEE International Conference on Robotics and Biomimetics, ROBIO 2013
会议日期December 12-14, 2013
会议地点Shenzhen, China
关键词Biomimetics Graphic methods Robotics Target tracking
页码2691-2695
通讯作者Duan, Jingdi
中文摘要In this paper, we propose online metric learning tracking method that consider visual tracking as a similarity measurement problem, and incorporates adaptive metric learning and generative histogram model based on non-sparse linear representation into the target tracking framework. We propose a generative histogram model based on non-sparse linear representation, which make full use of the non-sparse coefficients to discriminate between the target and the background. The similarity metric is adaptively learned online to maximize the margin of the distance between the foreground target and background. A bi-linear graph is defined accordingly to propagate the label of each sample. The model can also self-update using the more confident new samples. Numerous experiments on various challenging videos demonstrate that the proposed tracker performs favorably against several state-of-the-art algorithms. © 2013 IEEE.
收录类别EI ; CPCI(ISTP)
产权排序3
会议录2013 IEEE International Conference on Robotics and Biomimetics, ROBIO 2013
会议录出版者IEEE
会议录出版地New York
语种英语
ISBN号978-1-4799-2744-9
WOS记录号WOS:000352739000449
源URL[http://ir.sia.cn/handle/173321/14771]  
专题沈阳自动化研究所_机器人学研究室
推荐引用方式
GB/T 7714
Duan, Jingdi,Fan BJ,Cong Y. Visual target tracking via weighted non-sparse representation and online metric learning[C]. 见:2013 IEEE International Conference on Robotics and Biomimetics, ROBIO 2013. Shenzhen, China. December 12-14, 2013.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。