中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
云环境下基于神经网络和群搜索优化的资源分配机制

文献类型:期刊论文

作者孙佳佳; 王兴伟; 高程希; 黄敏
刊名软件学报
出版日期2014
卷号25期号:8页码:1858-1873
关键词云计算 双向组合拍卖 体验质量 威望 BP神经网络 群搜索优化
ISSN号1000-9825
其他题名Resource allocation scheme based on neural network and group search optimization in cloud environment
产权排序1
中文摘要在云环境下,各种闲置资源可以通过池化形成资源池,进而利用虚拟化技术将资源池中的不同资源组合以服务的形式提供给用户使用,因此需要合理而有效的机制来分配资源。针对云环境下资源的特点,将经济学和智能方法相结合,提出了一种基于双向组合拍卖的智能资源分配机制。在该机制中,提出了基于体验质量(quality of experience,简称QoE)的威望系统,引入威望衰减系数和用户信誉度,降低拍卖中恶意行为造成的影响,为资源交易提供QoE支持。对拍卖中的竞价决策,综合考虑多种因素,提出了基于BP神经网络的竞标价格决策机制,不仅可以合理确定竞标价,而且使价格可以动态适应市场变化。最后,由于组合拍卖胜标确定问题是NP完全的,因此引入群搜索优化算法,以市场盈余和总体威望为优化目标,得到资源分配方案。仿真研究结果表明,该机制是可行和有效的。
英文摘要In cloud environment, all kinds of idle resources can be pooled to establish a resource pool, and different kinds of resources can be combined as a service to the users through virtualization. Therefore, an effective scheme is necessary for managing and allocating the resources. In this paper, economic and intelligent methods are employed to form an intelligent resource allocation scheme based on double combinatorial auction with respect to the characteristics of resources in cloud environment. In the proposed scheme, a reputation system on the basis of quality of experience (QoE) is devised, and the reputation attenuation coefficient and the user credit degree are introduced to decrease the negative effects of malicious behaviors on resource auctions, providing QoE support to resource dealing. In order to determine bidding price rationally, a bidding price decision mechanism based on back propagation (BP) neural network is presented to comprehensively consider various influence factors to make price adapt to the fluctuating market. Finally, due to the fact that the problem of winner determination in combinatorial auction is NP-complete, a group search optimization algorithm is adopted to find the specific resource allocation solution with market surplus and total reputation optimized. Simulation studies are conducted to demonstrate the feasibility and effectiveness of the proposed scheme.
收录类别EI ; CSCD
语种中文
CSCD记录号CSCD:5214433
公开日期2015-02-04
源URL[http://ir.sia.cn/handle/173321/15658]  
专题沈阳自动化研究所_工业控制网络与系统研究室
推荐引用方式
GB/T 7714
孙佳佳,王兴伟,高程希,等. 云环境下基于神经网络和群搜索优化的资源分配机制[J]. 软件学报,2014,25(8):1858-1873.
APA 孙佳佳,王兴伟,高程希,&黄敏.(2014).云环境下基于神经网络和群搜索优化的资源分配机制.软件学报,25(8),1858-1873.
MLA 孙佳佳,et al."云环境下基于神经网络和群搜索优化的资源分配机制".软件学报 25.8(2014):1858-1873.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。