Bacterial foraging optimization algorithm with particle swarm optimization strategy for global numerical optimization
文献类型:会议论文
作者 | Shen H(申海); Zhu YL(朱云龙)![]() |
出版日期 | 2009 |
会议名称 | ACM/SIGEVO Summit on Genetic and Evolutionary Computation |
会议日期 | June 12–14, 2009 |
会议地点 | Shanghai, China |
关键词 | bacterial foraging numerical optimization particle swarm optimization |
页码 | 497-504 |
中文摘要 | In 2002, K. M. Passino proposed Bacterial Foraging Optimization Algorithm (BFOA) for distributed optimization and control. One of the major driving forces of BFOA is the chemotactic movement of a virtual bacterium that models a trial solution of the optimization problem. However, during the process of chemotaxis, the BFOA depends on random search directions which may lead to delay in reaching the global solution. Recently, a new algorithm BFOA oriented by PSO termed BF-PSO has shown superior in proportional integral derivative controller tuning application. In order to examine the global search capability of BF-PSO, we evaluate the performance of BFOA and BF-PSO on 23 numerical benchmark functions. In BF-PSO, the search directions of tumble behavior for each bacterium oriented by the individual's best location and the global best location. The experimental results show that BF-PSO performs much better than BFOA for almost all test functions. That's approved that the BFOA oriented by PSO strategy improve its global optimization capability. |
收录类别 | EI ; CPCI(ISTP) |
产权排序 | 1 |
会议主办者 | ACM |
会议录 | Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation
![]() |
会议录出版者 | ACM |
会议录出版地 | New York |
语种 | 英语 |
ISBN号 | 978-1-60558-326-6 |
WOS记录号 | WOS:000282382900067 |
源URL | [http://ir.sia.cn/handle/173321/8163] ![]() |
专题 | 沈阳自动化研究所_工业信息学研究室_先进制造技术研究室 |
推荐引用方式 GB/T 7714 | Shen H,Zhu YL,Zhou XM,et al. Bacterial foraging optimization algorithm with particle swarm optimization strategy for global numerical optimization[C]. 见:ACM/SIGEVO Summit on Genetic and Evolutionary Computation . Shanghai, China. June 12–14, 2009. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。