中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Bacterial foraging optimization algorithm with particle swarm optimization strategy for global numerical optimization

文献类型:会议论文

作者Shen H(申海); Zhu YL(朱云龙); Zhou XM(周小明); Guo HF(郭海峰); Chang CG(常春光)
出版日期2009
会议名称ACM/SIGEVO Summit on Genetic and Evolutionary Computation  
会议日期June 12–14, 2009
会议地点Shanghai, China
关键词bacterial foraging numerical optimization particle swarm optimization
页码497-504
中文摘要In 2002, K. M. Passino proposed Bacterial Foraging Optimization Algorithm (BFOA) for distributed optimization and control. One of the major driving forces of BFOA is the chemotactic movement of a virtual bacterium that models a trial solution of the optimization problem. However, during the process of chemotaxis, the BFOA depends on random search directions which may lead to delay in reaching the global solution. Recently, a new algorithm BFOA oriented by PSO termed BF-PSO has shown superior in proportional integral derivative controller tuning application. In order to examine the global search capability of BF-PSO, we evaluate the performance of BFOA and BF-PSO on 23 numerical benchmark functions. In BF-PSO, the search directions of tumble behavior for each bacterium oriented by the individual's best location and the global best location. The experimental results show that BF-PSO performs much better than BFOA for almost all test functions. That's approved that the BFOA oriented by PSO strategy improve its global optimization capability.
收录类别EI ; CPCI(ISTP)
产权排序1
会议主办者ACM
会议录Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation
会议录出版者ACM
会议录出版地New York
语种英语
ISBN号978-1-60558-326-6
WOS记录号WOS:000282382900067
源URL[http://ir.sia.cn/handle/173321/8163]  
专题沈阳自动化研究所_工业信息学研究室_先进制造技术研究室
推荐引用方式
GB/T 7714
Shen H,Zhu YL,Zhou XM,et al. Bacterial foraging optimization algorithm with particle swarm optimization strategy for global numerical optimization[C]. 见:ACM/SIGEVO Summit on Genetic and Evolutionary Computation  . Shanghai, China. June 12–14, 2009.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。