中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Moving Object Tracking via Hausdorff Distance and Particle Filter

文献类型:期刊论文

作者Wang JQ(王俊卿); Shi ZL(史泽林); Huang SB(黄莎白)
刊名International Journal of Information Technology
出版日期2006
卷号12期号:2页码:66-75
关键词Moving Objects Hausdorff Distances Adaptive Tracking Translation
ISSN号1305-239X
产权排序1
中文摘要Moving object tracking is widely applied in computer vision. A novel method for moving object tracking, which utilizes particle filter and Hausdorff distance is proposed in this paper. This algorithm consists of system model, measure model, the strategy of template update with adaptive tracking window and solution to occlusion in the particle filter framework. In system model, Hausdorff distance and edge information of target are applied to improve the robustness against variation of rotation, scale, translation and illumination of target. In measure model, this new similarity metric defined based on gray histogram not only enhances tracking fault-tolerant property, but its computational cost has also been greatly reduced. The strategy of update template of adaptive tracking window and solution to occlusion makes tracking more stable and robust. The experimental results also illustrate that this algorithm is stable and efficient to track deformable objects in image sequences.
语种英语
公开日期2013-04-23
源URL[http://ir.sia.cn/handle/173321/10639]  
专题沈阳自动化研究所_光电信息技术研究室
推荐引用方式
GB/T 7714
Wang JQ,Shi ZL,Huang SB. Moving Object Tracking via Hausdorff Distance and Particle Filter[J]. International Journal of Information Technology,2006,12(2):66-75.
APA Wang JQ,Shi ZL,&Huang SB.(2006).Moving Object Tracking via Hausdorff Distance and Particle Filter.International Journal of Information Technology,12(2),66-75.
MLA Wang JQ,et al."Moving Object Tracking via Hausdorff Distance and Particle Filter".International Journal of Information Technology 12.2(2006):66-75.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。