中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Folded-concave penalization approaches to tensor completion

文献类型:期刊论文

作者Cao, Wenfei; Wang, Yao; Yang, Can; Chang, Xiangyu; Han Z(韩志); Xu, Zongben
刊名Neurocomputing
出版日期2015
卷号152页码:261-273
关键词Tensor completion Nuclear norm Folded-concave penalization Local linear approximation Sparse learning
ISSN号0925-2312
产权排序3
通讯作者Wang, Yao
中文摘要The existing studies involving matrix or tensor completion problems are commonly under the nuclear norm penalization framework due to the computational efficiency of the resulting convex optimization problem. Folded-concave penalization methods have demonstrated surprising developments in sparse learning problems due to their nice practical and theoretical properties. To share the same light of folded-concave penalization methods, we propose a new tensor completion model via folded-concave penalty for estimating missing values in tensor data. Two typical folded-concave penalties, the minmax concave plus (MCP) penalty and the smoothly clipped absolute deviation (SCAD) penalty, are employed in the new model. To solve the resulting nonconvex optimization problem, we develop a local linear approximation augmented Lagrange multiplier (LLA-ALM) algorithm which combines a two-step LLA strategy to search a local optimum of the proposed model efficiently. Finally, we provide numerical experiments with phase transitions, synthetic data sets, real image and video data sets to exhibit the superiority of the proposed model over the nuclear norm penalization method in terms of the accuracy and robustness.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence
研究领域[WOS]Computer Science
关键词[WOS]VARIABLE SELECTION ; ORACLE PROPERTIES ; REGULARIZATION ; ALGORITHMS ; MATRICES ; LASSO ; MODEL
收录类别SCI ; EI
资助信息National 973 Project of China under Grant number 2013 CB329404 and Natural Science Foundation of China under Grantnumbers 61273020and61303168.
语种英语
WOS记录号WOS:000349572600027
公开日期2015-02-04
源URL[http://ir.sia.cn/handle/173321/15660]  
专题沈阳自动化研究所_机器人学研究室
推荐引用方式
GB/T 7714
Cao, Wenfei,Wang, Yao,Yang, Can,et al. Folded-concave penalization approaches to tensor completion[J]. Neurocomputing,2015,152:261-273.
APA Cao, Wenfei,Wang, Yao,Yang, Can,Chang, Xiangyu,Han Z,&Xu, Zongben.(2015).Folded-concave penalization approaches to tensor completion.Neurocomputing,152,261-273.
MLA Cao, Wenfei,et al."Folded-concave penalization approaches to tensor completion".Neurocomputing 152(2015):261-273.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。